cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050781 Numbers k such that sopfr(k) = sopfr(k - sopfr(k)).

Original entry on oeis.org

55, 72, 84, 119, 143, 256, 2106, 2211, 2279, 3024, 3150, 3551, 4284, 6360, 6500, 9350, 10200, 10285, 10919, 13560, 14279, 14351, 15606, 16463, 17063, 23595, 25011, 27208, 28208, 28600, 31460, 33096, 42180, 44330, 52320, 53053, 53824
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

sopfr(k) = sum of the prime factors of k (with multiplicity).

Examples

			sopfr(72) = 2+2+2+3+3 = 12 = 2+2+3+5 = sopfr(72 - sopfr(72)), so 72 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    sopf[n_]:=Module[{sopfn=Total[Times@@@FactorInteger[n]],m},m=n+sopfn;If[n==m-Total[Times@@@FactorInteger[m]],m,0]]; DeleteCases[Table[ sopf[n],{n,55000}],?(#==0&)] (* _Harvey P. Dale, Jun 15 2011 *)

Extensions

Edited by Jon E. Schoenfield, Dec 25 2016

A279935 Numbers n such that n + sopf(n) + rad(n) = m and m - sopf(m) - rad(m) = n, where sopf(n) is the sum of the distinct primes dividing n and rad(n) is the squarefree kernel of n.

Original entry on oeis.org

3, 4, 75, 112, 2057, 9178, 29818, 73813, 138992, 240469, 531002, 661489, 716856, 763648, 905474, 1033909, 1395554, 1572001, 1605519, 1643372, 1661030, 1692277, 1705724, 2312593, 2864773, 2911839, 2928193, 2977676, 3114366, 3744951, 4035647, 4122178, 4227036, 5716177
Offset: 1

Views

Author

Paolo P. Lava, Dec 23 2016

Keywords

Examples

			Prime factors of 9178 are 2, 13, 353:
sopf(9178) = 2 + 13 + 353 = 368, rad(9178) = 2 * 13 * 353 = 9178 and 9178 + 368 + 9178 = 18724.
Prime factors of 18724 are 2, 2, 31, 151:
sopf(18724) = 2 + 31 + 151 = 184, rad(18724) = 2 * 31 * 151 = 9362 and 18724 - 184 - 9362 = 9178.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 1 to q do
    a:=ifactors(n)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a));
    c:=n+b; a:=ifactors(c)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a));
    d:=c-b; if d=n then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := Block[{pd = First@# & /@ FactorInteger@n}, Times @@ pd + Plus @@ pd]; fQ[n_] :=  n + f[n] - f[n + f[n]] == n; Select[ Range@ 1000000, fQ] (* Robert G. Wilson v, Dec 24 2016 *)

A057874 Sets of three composites in bidirectional 'sum of prime factors' progression/retrogression.

Original entry on oeis.org

95, 119, 143, 174191, 175031, 175871, 298687992, 298688708, 298689424
Offset: 0

Views

Author

Patrick De Geest, Sep 15 2000

Keywords

Comments

First term of next set > 2000000000.

Examples

			First set is (95,119,143) all terms having 'sum of prime factors' = 24. So '95' + (5+19) = '119' + (7+17) = '143' AND '143' - (11+13) = '119' - (7+17) = '95'.
		

Crossrefs

Extensions

This really seems to be three sequences, not one! Should be split. - N. J. A. Sloane
Showing 1-3 of 3 results.