cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050932 Denominator of (n+1)*Bernoulli(n).

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 6, 1, 10, 1, 6, 1, 210, 1, 2, 1, 30, 1, 42, 1, 110, 1, 6, 1, 546, 1, 2, 1, 30, 1, 462, 1, 170, 1, 6, 1, 51870, 1, 2, 1, 330, 1, 42, 1, 46, 1, 6, 1, 6630, 1, 22, 1, 30, 1, 798, 1, 290, 1, 6, 1, 930930, 1, 2, 1, 102, 1, 966, 1, 10, 1, 66, 1, 1919190
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Comments

Apparently a(n) = denominator(Sum_{k=0..n-1} (-1)^(n-k+1)*E1(n, k+1)/binomial(n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021

Crossrefs

Programs

  • Haskell
    a050932 n = a050932_list !! n
    a050932_list = 1 : map (denominator . sum) (zipWith (zipWith (%))
       (zipWith (map . (*)) (drop 2 a000142_list) a242179_tabf) a106831_tabf)
    -- Reinhard Zumkeller, Jul 04 2014
    
  • Mathematica
    Denominator/@Table[(n+1)BernoulliB[n],{n,0,80}] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    a(n)=denominator(bernfrac(n)*(n+1)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from sympy import bernoulli, gcd
    def A050932(n):
        q = bernoulli(n).q
        return q//gcd(q,n+1) # Chai Wah Wu, Apr 02 2021