cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050996 Decimal expansion of Rényi's parking constant.

Original entry on oeis.org

7, 4, 7, 5, 9, 7, 9, 2, 0, 2, 5, 3, 4, 1, 1, 4, 3, 5, 1, 7, 8, 7, 3, 0, 9, 4, 3, 8, 3, 0, 1, 7, 8, 1, 7, 3, 0, 2, 4, 7, 8, 6, 2, 6, 4, 0, 7, 4, 2, 2, 8, 3, 7, 6, 6, 0, 4, 2, 2, 9, 1, 6, 3, 4, 2, 5, 1, 6, 7, 8, 8, 1, 6, 0, 2, 9, 5, 4, 4, 0, 4, 3, 1, 2, 4, 3, 0, 8, 5, 0, 3, 6, 9, 3, 1, 4, 1, 1, 1, 1, 5
Offset: 0

Views

Author

Keywords

Comments

Named after the Hungarian mathematician Alfréd Rényi (1921-1970). - Amiram Eldar, Jun 24 2021

Examples

			0.7475979202534114351787309438301781730247862640742283766042291634251678816...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.3, p. 278.
  • A. Rényi, On a one-dimensional problem concerning random space-filling, Publ. Math. Inst. Hung. Acad. Sci., Vol. 3 (1958), pp. 109-127.

Crossrefs

Programs

  • Mathematica
    digits = 101; c = NIntegrate[E^(-2*(EulerGamma + Gamma[0, t] + Log[t])), {t, 0, Infinity}, WorkingPrecision -> digits + 10, MaxRecursion -> 20]; RealDigits[c, 10, digits][[1]] (* Jean-François Alcover, Nov 05 2012, updated May 21 2016 *)

Formula

Equals exp(-2*gamma) * Integral_{x>=0} exp(2*Ei(-x))/x^2 dx, where gamma is Euler's constant (A001620) and Ei(x) is the exponential integral. - Amiram Eldar, Jun 24 2021