A243266 Decimal expansion of a parking constant related to the asymptotic expected number of cars, assuming random car lengths.
9, 8, 4, 8, 7, 1, 2, 8, 2, 5, 2, 5, 9, 9, 5, 3, 0, 4, 4, 7, 2, 7, 9, 5, 2, 2, 1, 5, 0, 7, 0, 5, 9, 5, 3, 2, 3, 1, 2, 7, 6, 0, 9, 1, 7, 0, 4, 1, 0, 3, 7, 4, 9, 5, 8, 1, 3, 6, 5, 2, 3, 2, 5, 5, 2, 0, 6, 5, 3, 7, 9, 3, 8, 8, 4, 0, 7, 3, 1, 6, 0, 6, 4, 3, 1, 8, 7, 0, 0, 9, 7, 4, 9, 4, 6, 3, 0, 0, 6, 7
Offset: 0
Examples
0.9848712825259953044727952215...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 279.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's MathWorld, Rényi's Parking Constants
Crossrefs
Cf. A050996.
Programs
-
Mathematica
(1-1/2^((Sqrt[17]-1)/4))*Sqrt[Pi]*Gamma[Sqrt[17]/2]/(Gamma[(Sqrt[17]+1)/4]*Gamma[(Sqrt[17]+3)/4]^2) // RealDigits[#, 10, 100]& // First
-
PARI
(1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*gamma(sqrt(17)/2)/(gamma((sqrt(17)+1)/4)*gamma((sqrt(17)+3)/4)^2) \\ G. C. Greubel, Feb 14 2017
Formula
(1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*GAMMA(sqrt(17)/2)/(GAMMA((sqrt(17)+1)/4)*GAMMA((sqrt(17)+3)/4)^2), where GAMMA is the Euler Gamma function.
Comments