A051025 Primes p for which pi_{4,3}(p) - pi_{4,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
26861, 616841, 616849, 616877, 617011, 617269, 617327, 617339, 617359, 617369, 617401, 617429, 617453, 617521, 617537, 617689, 617699, 617717, 622813, 622987, 623003, 623107, 623209, 623299, 623321, 623341, 623353, 623401, 623423, 623437
Offset: 1
Keywords
Links
- Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Alahmadi, M. Planat, and P. Solé, Chebyshev's bias and generalized Riemann hypothesis, HAL Id: hal-00650320; Journal of Algebra, Number Theory: Advances and Applications, 2013, 8 (1-2), pp.41-55.
- C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for moduli 4 and 8 which occur before 10^12, International Journal of Mathematics and Mathematical Sciences, vol. 2, no. 1, pp. 111-119, 1979.
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp.54-76.
- M. Deléglise, P. Dusart, and X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp.1565-1575.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Sergei D. Shchebetov, First 418933 terms (zipped file)
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
Crossrefs
Programs
-
Mathematica
For[i=2; d=0, True, i++, d+=Mod[p=Prime[i], 4]-2; If[d==-1, Print[p]]] (* Second program: *) Prime@ Position[Accumulate@ Array[Mod[Prime@ #, 4] - 2 &, 51000], -1][[All, 1]] (* Michael De Vlieger, Dec 30 2017 *)
-
Python
from sympy import nextprime; a, p = 0, 2 while p < 623803: p=nextprime(p); a += p%4-2 if a == -1: print(p, end = ', ') # Ya-Ping Lu, Jan 18 2025
Extensions
Edited by Dean Hickerson, Mar 10 2002
Comments