A051026 Number of primitive subsequences of {1, 2, ..., n}.
1, 2, 3, 5, 7, 13, 17, 33, 45, 73, 103, 205, 253, 505, 733, 1133, 1529, 3057, 3897, 7793, 10241, 16513, 24593, 49185, 59265, 109297, 163369, 262489, 355729, 711457, 879937, 1759873, 2360641, 3908545, 5858113, 10534337, 12701537, 25403073, 38090337, 63299265, 81044097, 162088193, 205482593, 410965185, 570487233, 855676353
Offset: 0
Examples
a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4). a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5). From _Gus Wiseman_, Jun 07 2019: (Start) The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {3} {3} {3} {2,3} {4} {4} {2,3} {5} {3,4} {2,3} {2,5} {3,4} {3,5} {4,5} {2,3,5} {3,4,5} a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are: {} {} {} {} {} {} {1} {1} {1} {1} {1} {1,2} {1,2} {1,3} {1,3} {1,3} {1,4} {1,4} {1,2,3} {1,2,4} {1,5} {1,3,4} {1,2,4} {1,2,3,4} {1,3,4} {1,3,5} {1,4,5} {1,2,3,4} {1,2,4,5} {1,3,4,5} {1,2,3,4,5} Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are: {} {} {} {} {} {} {1} {2} {2} {3} {3} {1,2} {3} {4} {4} {2,3} {2,4} {5} {1,2,3} {3,4} {2,4} {2,3,4} {3,4} {1,2,3,4} {3,5} {4,5} {2,3,4} {2,4,5} {3,4,5} {2,3,4,5} {1,2,3,4,5} (End) From _Gus Wiseman_, Mar 12 2024: (Start) Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are: {} {} {} {} {} {} {1} {1} {1} {1} {1} {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,2,3} {1,2,3} {1,5} {1,2,4} {1,2,3} {1,2,3,4} {1,2,4} {1,2,5} {1,3,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,2,3,4,5} (End)
References
- Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 320. - N. J. A. Sloane, Apr 06 2012
Links
- Juliana Couras, Ricardo Jesus, and Tomás Oliveira e Silva, Table of n, a(n) for n = 0..800 (terms up to n=80 from Alois P. Heinz)
- Marcel K. Goh and Jonah Saks, Alternating-sum statistics for certain sets of integers, arXiv:2206.12535 [math.CO], 2022.
- Nathan McNew, Counting primitive subsets and other statistics of the divisor graph of {1,2,..,n}, arXiv:1808.04923 [math.NT], 2018.
- Richárd Palincza, Counting type and extremal problems from Arithmetic Combinatorics, Ph. D. Thesis, Budapest Univ. Tech. Econ. (Hungary, 2024).
- Eric Weisstein's World of Mathematics, Primitive Sequence
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(s) option remember; local n; n:= max(s[]); `if`(n<0, 1, b(s minus {n}) + b(s minus divisors(n))) end: bb:= n-> b({$2..n} minus divisors(n)): sb:= proc(n) option remember; `if`(n<2, 0, bb(n) + sb(n-1)) end: a:= n-> `if`(n=0, 1, `if`(isprime(n), 2*a(n-1)-1, 2+sb(n))): seq(a(n), n=0..40); # Alois P. Heinz, Mar 07 2011
-
Mathematica
b[s_] := b[s] = With[{n=Max[s]}, If[n < 0, 1, b[Complement[s, {n}]] + b[Complement[s, Divisors[n]]]]]; bb[n_] := b[Complement[Range[2, n], Divisors[n]]]; sb[n_] := sb[n] = If[n < 2, 0, bb[n] + sb[n-1]]; a[n_] := If[n == 0, 1, If[PrimeQ[n], 2a[n-1] - 1, 2 + sb[n]]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jul 27 2011, converted from Maple *) Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Select[Union@@Table[#*i,{i,n}],#<=n&]]&]],{n,10}] (* Gus Wiseman, Jun 07 2019 *) Table[Length[Select[Subsets[Range[n]], #==Union@@Divisors/@#&]],{n,0,10}] (* Gus Wiseman, Mar 12 2024 *)
Extensions
More terms from David Wasserman, May 02 2002
a(32)-a(37) from Donovan Johnson, Aug 11 2010
Comments