cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A215075 T(n,k) = Number of squarefree words of length n in a (k+1)-ary alphabet, with new values 0..k introduced in increasing order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 4, 11, 7, 0, 1, 1, 2, 4, 12, 29, 10, 0, 1, 1, 2, 4, 12, 39, 77, 13, 0, 1, 1, 2, 4, 12, 40, 138, 202, 18, 0, 1, 1, 2, 4, 12, 40, 153, 503, 532, 24, 0, 1, 1, 2, 4, 12, 40, 154, 638, 1864, 1395, 34, 0, 1, 1, 2, 4, 12, 40, 154, 659
Offset: 1

Views

Author

R. H. Hardin, Aug 02 2012

Keywords

Comments

Alternative definition: for (k+1)-ary words u=u_1...u_n and v=v_1...v_n, let u~v if there exists a permutation t of the alphabet such that v_i=t(u_i), i=1,...,n. Then ~ preserves length and squarefreeness, and T(n,k) is the number of equivalence classes of (k+1)-ary squarefree words of length n. - Arseny Shur, Apr 26 2015

Examples

			Table starts
.1..1....1.....1......1......1......1......1......1......1......1......1......1
.1..1....1.....1......1......1......1......1......1......1......1......1......1
.1..2....2.....2......2......2......2......2......2......2......2......2......2
.0..3....4.....4......4......4......4......4......4......4......4......4......4
.0..5...11....12.....12.....12.....12.....12.....12.....12.....12.....12.....12
.0..7...29....39.....40.....40.....40.....40.....40.....40.....40.....40.....40
.0.10...77...138....153....154....154....154....154....154....154....154....154
.0.13..202...503....638....659....660....660....660....660....660....660....660
.0.18..532..1864...2825...3085...3113...3114...3114...3114...3114...3114...3114
.0.24.1395..6936..12938..15438..15893..15929..15930..15930..15930..15930..15930
.0.34.3664.25868..60458..81200..86857..87599..87644..87645..87645..87645..87645
.0.44.9605.96512.285664.442206.502092.513649.514795.514850.514851.514851.514851
...
Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....0....2....2....2....0....2
..3....3....0....0....1....3....0....3....1....0....2....3....3....3....2....1
..1....2....3....3....0....0....3....1....3....2....1....4....1....4....0....0
..0....0....1....0....3....3....2....3....1....1....2....1....2....0....1....2
		

Crossrefs

Column 2 is A060688(n-1), or A006156 divided by 6 (for n>1).
Column 3 is A118311, or A051041 divided by 24 (for n>3).

Formula

From Arseny Shur, Apr 26 2015: (Start)
Let L_k be the limit lim T(n,k)^{1/n}, which exists because T(n,k) is a submultiplicative sequence for any k. Then L_k=k-1/k-1/k^3-O(1/k^5) (Shur, 2010).
Exact values of L_k for small k, rounded up to several decimal places:
L_2=1.30176..., L_3=2.6215080..., L_4=3.7325386... (for L_5,...,L_14 see Shur arXiv:1009.4415).
Empirical observation: for k=2 the O-term in the general formula is slightly bigger than 2/k^5, and for k=3,...,14 this O-term is slightly smaller than 2/k^5.
(End)

A214943 T(n,k) = Number of squarefree words of length n in a (k+1)-ary alphabet.

Original entry on oeis.org

2, 3, 2, 4, 6, 2, 5, 12, 12, 0, 6, 20, 36, 18, 0, 7, 30, 80, 96, 30, 0, 8, 42, 150, 300, 264, 42, 0, 9, 56, 252, 720, 1140, 696, 60, 0, 10, 72, 392, 1470, 3480, 4260, 1848, 78, 0, 11, 90, 576, 2688, 8610, 16680, 15960, 4848, 108, 0, 12, 110, 810, 4536, 18480, 50190, 80040
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2012

Keywords

Comments

Table starts
.2..3...4....5.....6.....7......8......9.....10......11......12......13......14
.2..6..12...20....30....42.....56.....72.....90.....110.....132.....156.....182
.2.12..36...80...150...252....392....576....810....1100....1452....1872....2366
.0.18..96..300...720..1470...2688...4536...7200...10890...15840...22308...30576
.0.30.264.1140..3480..8610..18480..35784..64080..107910..172920..265980..395304
.0.42.696.4260.16680.50190.126672.281736.569520.1068210.1886280.3169452.5108376
Empirical: row n is a polynomial of degree n
Coefficients for rows 1-12, highest power first:
...1...1
...1...1...0
...1...1...0...0
...1...1..-1..-1...0
...1...1..-2..-1...1...0
...1...1..-3..-2...2...1...0
...1...1..-4..-3...5...2..-2...0
...1...1..-5..-4...8...4..-4..-1...0
...1...1..-6..-5..12...8..-9..-4...2...0
...1...1..-7..-6..17..12.-17..-7...6...0...0
...1...1..-8..-7..23..17.-28.-13..10...2...2...0
...1...1..-9..-8..30..23.-45.-23..25...3..-2...4...0
Terms in column k are multiples of k+1 due to symmetry. - Michael S. Branicky, May 20 2021

Examples

			Some solutions for n=6 k=4
..0....1....1....0....4....4....4....0....2....2....1....2....1....4....1....1
..2....0....4....4....3....0....0....4....1....3....4....0....0....2....0....3
..1....4....2....1....2....3....2....1....0....4....3....2....2....1....2....1
..4....3....4....2....3....1....4....2....4....1....2....4....4....3....4....4
..1....0....3....0....0....4....2....3....2....0....1....3....0....4....2....3
..0....2....1....3....1....0....3....1....4....4....0....0....1....3....0....1
		

Crossrefs

Cf. A006156 (column 2), A051041 (column 3), A214939 (column 4).
Cf. A002378 (row 2), A011379 (row 3), A047929(n+1) (row 4).

Programs

  • Python
    from itertools import product
    def T(n, k):
      if n == 1: return k+1
      symbols = "".join(chr(48+i) for i in range(k+1))
      squares = ["".join(u)*2 for r in range(1, n//2 + 1)
        for u in product(symbols, repeat = r)]
      words = ("0" + "".join(w) for w in product(symbols, repeat=n-1))
      return (k+1)*sum(all(s not in w for s in squares) for w in words)
    def atodiag(maxd): # maxd antidiagonals
      return [T(n, d+1-n) for d in range(1, maxd+1) for n in range(1, d+1)]
    print(atodiag(11)) # Michael S. Branicky, May 20 2021

Formula

From Arseny Shur, Apr 26 2015: (Start)
Let L_k be the limit lim T(n,k)^{1/n}, which exists because T(n,k) is a submultiplicative sequence for any k. Then L_k=k-1/k-1/k^3-O(1/k^5) (Shur, 2010).
Exact values of L_k for small k, rounded up to several decimal places:
L_2=1.30176..., L_3=2.6215080..., L_4=3.7325386... (for L_5,...,L_14 see Shur arXiv:1009.4415).
Empirical observation: for k=2 the O-term in the general formula is slightly bigger than 2/k^5, and for k=3,...,14 this O-term is slightly smaller than 2/k^5.
(End)

A118311 Number of dissimilar squarefree quaternary words of length n.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 77, 202, 532, 1395, 3664, 9605, 25192, 66047, 173183, 453998, 1190259, 3120294, 8180124, 21444290, 56217025, 147373441, 386342414, 1012799936, 2655067412, 6960281083, 18246444362, 47833200849, 125395149294, 328724391241, 861753701567, 2259094233704
Offset: 1

Views

Author

Alford Arnold, Apr 22 2006

Keywords

Comments

Sherman Stein and A006156 count ordered squarefree(twin-free) ternary words. A060688 counts the dissimilar cases essentially by dividing by 3! (the number of ways to permute a,b,c). A051041 counts ordered squarefree quaternary words. A118311 counts the dissimilar cases (beginning with the 4th term) by dividing A051041 by 4!.

Examples

			a(1) = 1 because a,b,c and d are similar.
a(2) = 1 because aa is not squarefree; so ab is the only valid case.
a(3) = 2 counting aba and abc.
a(4) = 4 counting abac, abca, abcb and abcd.
a(5) = 11 counting abaca,abacb,abcab,abcac,abcba,abacd,abcad,abcbd,abcda,abcdb and abcdc.
		

References

  • Sherman Stein, How The Other Half Thinks, 2001, page 149.

Crossrefs

Extensions

a(16)-a(25) from Max Alekseyev, Jul 03 2006
a(26)-a(30) from Giovanni Resta, Mar 20 2020

A343421 Number of Dean words of length n, i.e., squarefree reduced words over {0,1,2,3}.

Original entry on oeis.org

4, 8, 16, 24, 40, 64, 104, 144, 216, 328, 496, 720, 1072, 1584, 2344, 3384, 4952, 7264, 10632, 15504, 22656, 33136, 48488, 70592, 103032, 150352, 219400, 319816, 466664, 680872, 993440, 1447952, 2111448, 3079464, 4491216, 6548936, 9550728, 13927840, 20311168
Offset: 1

Views

Author

Michel Marcus, Apr 15 2021

Keywords

Comments

A Dean word is a reduced word that does not contain occurrences of ww for any nonempty w.
a(n) is a multiple of 4 by symmetry. - Michael S. Branicky, Jun 20 2022

Crossrefs

Programs

  • Python
    def isf(s): # incrementally squarefree (check factors ending in last letter)
        for l in range(1, len(s)//2 + 1):
            if s[-2*l:-l] == s[-l:]: return False
        return True
    def aupton(nn, verbose=False):
        alst, sfs = [], set("0")
        for n in range(1, nn+1):
            an, eo = 4*len(sfs), ["02", "13"]
            sfsnew = set(s+i for s in sfs for i in eo[n%2] if isf(s+i))
            alst, sfs = alst+[an], sfsnew
            if verbose: print(n, an)
        return alst
    print(aupton(30)) # Michael S. Branicky, Jun 20 2022

Extensions

More terms from James Rayman, Apr 15 2021
Showing 1-4 of 4 results.