cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051047 For n > 5, a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); initial terms are 1, 3, 8, 120, 1680.

Original entry on oeis.org

1, 3, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080
Offset: 1

Views

Author

Keywords

Comments

The recurrence gives an infinite sequence of polynomials S={x,x+2,c_1(x),c_2(x),...} such that the product of any two consecutive polynomials, increased by 1, is the square of a polynomial - see the Jones reference.

Crossrefs

Cf. A051048. Essentially the same as A045899.

Programs

  • Magma
    I:=[1,3,8,120,1680]; [n le 5 select I[n] else 14*Self(n-1)-Self(n-2)+8: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    With[{x = 1},
    Join[{x, x + 2},
    RecurrenceTable[{c[-1] == c[0] == 0,
    c[k] == (4 x^2 + 8 x + 2) c[k - 1] - c[k - 2] + 4 (x + 1)}, c, {k, 1, 12}]]]
    LinearRecurrence[{15, -15, 1}, {1, 3, 8, 120, 1680}, 22] (* Charles R Greathouse IV, Oct 31 2011 *)
    Join[{1, 3}, RecurrenceTable[{a[1] == 8, a[2] == 120, a[n] == 14 a[n-1] - a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec((3*x^4-44*x^3+22*x^2+12*x-1)/(x^3-15*x^2+15*x-1)+O(x^99)) \\ Charles R Greathouse IV, Oct 31 2011
    

Formula

G.f.: x*(3*x^4-44*x^3+22*x^2+12*x-1) / (x^3-15*x^2+15*x-1).
For n>4, a(n) = 14*a(n-1)-a(n-2)+8. - Vincenzo Librandi, Mar 05 2016

Extensions

Entry revised by N. J. A. Sloane, Oct 25 2009, following correspondence with Eric Weisstein