A051071 Primes p such that x^4 = -2 has a solution mod p.
2, 3, 11, 19, 43, 59, 67, 73, 83, 89, 107, 113, 131, 139, 163, 179, 211, 227, 233, 251, 257, 281, 283, 307, 331, 337, 347, 353, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 577, 587, 593, 601, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 881, 883, 907, 937, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^4 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^4 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
-
PARI
forprime(p=2,2000,if([]~!=polrootsff(x^4+2,p,y-1),print1(p,", ")));print(); /* or: */ forprime(p=2,2000,if([]~!=polrootsmod(x^4+2,p),print1(p,", ")));print(); /* faster */ /* Joerg Arndt, Jul 27 2011 */
Extensions
More terms from Joerg Arndt, Jul 27 2011
Comments