cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A163183 Primes dividing 2^j + 1 for some odd j.

Original entry on oeis.org

3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Also the primes p for which ord_p(-2) is odd, as (-2)^j == 1 (mod p).
All such p are = 1 or 3 mod 8, so sequence is subsequence of A033200, as (-2)^{j+1} == -2 (mod p) implies that (-2/p) = 1, p == 1 or 3 (mod 8).
Claim: Sequence contains all primes = 3 mod 8, so contains A007520 as a subsequence.
Proof: If p = 8r + 3 then 2^{4r+1} == 1 or -1 (mod p). If former, then (2^{2r+1})^2 == 2 (mod p), (2/p) = 1, only true for p == 1 or 7 (mod 8). So p | 2^{4r+1} + 1.
Also contains some primes == 1 (mod 8), given in A163184. So sequence is a union of A007520 and A163184.
Claim: For every p in sequence and every 2^k, the equation x^{2^k} == -2 (mod p) is soluble. Hence sequence is a subsequence of A033203 (k=1), A051071 (k=2), A051073 (k=3), A051077 (k=4), A051085 (k=5), A051101 (k=6), ....
Proof: Put x == (-2)^u (mod p). Then using (-2)^j == 1 (mod p), we can solve x^{2^k} == -2 (mod p) if can find u and v such that u*2^k + v*j = 1, possible as gcd(2^k, j) = 1.
From Jianing Song, Jun 22 2025: (Start)
The multiplicative order of -2 modulo a(n) is A385228(n).
Contained in primes congruent to 1 or 3 modulo 8 (primes p such that -2 is a quadratic residue modulo p, A033200), and contains primes congruent to 3 modulo 8 (A007520).
Conjecture: this sequence has density 7/24 among the primes (see A014663). (End)

Examples

			11 is in sequence as 11 | 2^5 + 1; 281 (smallest element of the sequence == 1 (mod 8)) is in the sequence as 281 | 2^35 + 1.
		

Crossrefs

Sequence is a union of A007520 and A163184.
Subsequence of A033200. Contains A007520 as a subsequence.
Cf. A385228 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), this sequence (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Maple
    with(numtheory):A:=3:p:=3: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 then A:=A,p;;fi;od:A;
  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-2, #]] &] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(znorder(Mod(-2, p))%2, print1(p, ", "))); \\ Jinyuan Wang, Mar 23 2020

A051100 Primes p such that x^62 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 761, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 929, 937, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Differs from A033203 first at the 109th entry, at p=1427. - R. J. Mathar, Oct 14 2008
Complement of A216776 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^62 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^62 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051076 Primes p such that x^14 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 59, 67, 73, 83, 89, 97, 107, 131, 137, 139, 163, 179, 193, 227, 233, 241, 251, 257, 283, 307, 313, 331, 347, 353, 401, 409, 419, 433, 443, 457, 467, 499, 521, 523, 563, 569, 571, 577, 587, 593, 601, 619, 641, 643, 673, 683, 691, 739, 761, 769, 787, 809, 811, 857, 859, 881, 907, 929, 937, 947, 953, 971, 977, 1019
Offset: 1

Views

Author

Keywords

Comments

Complement of A216738 relative to A000040. - Vincenzo Librandi, Sep 16 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1030) | exists(t){x : x in ResidueClassRing(p) | x^14 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^14 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051078 Primes p such that x^18 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 41, 43, 59, 83, 89, 107, 113, 131, 137, 179, 227, 233, 251, 257, 281, 283, 347, 353, 401, 419, 443, 449, 457, 467, 491, 499, 521, 563, 569, 587, 593, 601, 617, 641, 643, 659, 683, 691, 761, 809, 827, 857, 881, 929, 947, 953, 971, 977, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1289, 1307, 1361, 1409
Offset: 1

Views

Author

Keywords

Comments

Differs from A051096 first at the 640th entry, at p=17659, next at p=23059. - R. J. Mathar, Oct 14 2008
Complement of A216740 relative to A000040. - Vincenzo Librandi, Sep 16 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1410) | exists(t){x : x in ResidueClassRing(p) | x^18 eq - 2}]; // Vincenzo Librandi Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^18 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051079 Primes p such that x^20 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 19, 43, 59, 67, 73, 83, 89, 107, 113, 139, 163, 179, 227, 233, 251, 257, 283, 307, 337, 347, 353, 379, 419, 443, 467, 499, 523, 547, 563, 571, 577, 587, 593, 617, 619, 643, 659, 683, 739, 787, 827, 859, 883, 907, 937, 947, 971, 1019, 1033, 1049, 1097, 1123
Offset: 1

Views

Author

Keywords

Comments

Complement of A216741 relative to A000040. - Vincenzo Librandi, Sep 16 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1150) | exists(t){x : x in ResidueClassRing(p) | x^20 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^20 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051080 Primes p such that x^22 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 73, 83, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 379, 401, 409, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 619, 641, 643, 659, 673, 691, 739, 761, 769, 787, 809, 811, 827, 857, 883, 907, 929, 937, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216742 relative to A000040. - Vincenzo Librandi, Sep 16 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^22 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^22 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051081 Primes p such that x^24 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 881, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1307, 1427, 1451, 1459, 1481
Offset: 1

Views

Author

Keywords

Comments

Complement of A216743 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^24 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Maple
    isA051081 := proc(p) local x; for x from 0 to p-1 do if (x^24 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051081(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Oct 15 2008
  • Mathematica
    ok[p_]:= Reduce[Mod[x^24 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from R. J. Mathar, Oct 15 2008

A051082 Primes p such that x^26 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 331, 337, 347, 353, 379, 401, 409, 419, 433, 449, 457, 467, 491, 499, 523, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 761, 769, 787, 809, 811, 827, 857, 881, 883, 907, 929, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216744 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^26 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^26 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051083 Primes p such that x^28 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 19, 59, 67, 73, 83, 89, 107, 131, 139, 163, 179, 227, 233, 251, 257, 283, 307, 331, 347, 353, 419, 443, 467, 499, 523, 563, 571, 577, 587, 593, 601, 619, 643, 683, 691, 739, 787, 811, 859, 881, 907, 937, 947, 971, 1019, 1033, 1049, 1091, 1097, 1123, 1153, 1163, 1171, 1187
Offset: 1

Views

Author

Keywords

Comments

Complement of A216745 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^28 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^28 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051084 Primes p such that x^30 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 17, 43, 59, 83, 89, 107, 113, 137, 179, 227, 233, 251, 257, 283, 307, 347, 353, 419, 433, 443, 449, 457, 467, 499, 563, 569, 587, 593, 617, 641, 643, 659, 683, 739, 809, 827, 857, 929, 947, 953, 971, 977, 1019, 1049, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1289, 1307, 1409
Offset: 1

Views

Author

Keywords

Comments

Complement of A216746 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1410) | exists(t){x : x in ResidueClassRing(p) | x^30 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^30 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011
Showing 1-10 of 24 results. Next