cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A033203 Primes p congruent to {1, 2, 3} (mod 8); or primes p of form x^2 + 2*y^2; or primes p such that x^2 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683
Offset: 1

Views

Author

Keywords

Comments

Sequence naturally partitions into two sequences: all primes p with ord_p(-2) odd (A163183, the primes dividing 2^j +1 for some odd j) and certain primes p with ord_p(-2) even (A163185). - Christopher J. Smyth, Jul 23 2009
Terms m in A047476 with A010051(m) = 1. - Reinhard Zumkeller, Dec 29 2012

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Cf. A039706, A003628 (complement with respect to A000040).
Primes in A002479.
Cf. A051100 (see Mathar's comment).
Apart from leading term the same as A033200.

Programs

  • Haskell
    a033203 n = a033203_list !! (n-1)
    a033203_list = filter ((== 1) . a010051) a047476_list
    -- Reinhard Zumkeller, Dec 29 2012, Jan 22 2012
    
  • Magma
    [p: p in PrimesUpTo(600) | p mod 8 in [1..3]]; // Vincenzo Librandi, Aug 11 2012
    
  • Magma
    [p: p in PrimesUpTo(800) | NormEquation(2,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 2, 10000] (* see A106856 *)
    Select[Prime[Range[200]],MemberQ[{1,2,3},Mod[#,8]]&] (* Harvey P. Dale, Mar 16 2013 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(-2,n)) \\ Charles R Greathouse IV, Nov 29 2016

Formula

a(n) = A002332(n) + 2*A002333(n)^2. - Zak Seidov, May 29 2014

A014663 Primes p such that multiplicative order of 2 modulo p is odd.

Original entry on oeis.org

7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Or, primes p which do not divide 2^n+1 for any n.
The possibility n=0 in the above rules out A072936(1)=2; apart from this, a(n)=A072936(n+1). - M. F. Hasler, Dec 08 2007
The order of 2 mod p is odd iff 2^k=1 mod p, where p-1=2^s*k, k odd. - M. F. Hasler, Dec 08 2007
Has density 7/24 (Hasse).
From Jianing Song, Jun 27 2025: (Start)
The multiplicative order of 2 modulo a(n) is A139686(n).
Contained in primes congruent to 1 or 7 modulo 8 (primes p such that 2 is a quadratic residue modulo p, A001132), and contains primes congruent to 7 modulo 8 (A007522). (End)

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.
  • P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.

Crossrefs

Cf. Complement in primes of A091317.
Cf. A001132, A007522, A040098, A045315, A049564, A139686 (the actual multiplicative orders).
Cf. Essentially the same as A072936 (except for missing leading term 2).
Cf. other bases: this sequence (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    okQ[p_] := OddQ[MultiplicativeOrder[2, p]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
  • PARI
    isA014663(p)=1==Mod(1,p)<<((p-1)>>factor(p-1,2)[1,2])
    listA014663(N=1000)=forprime(p=3,N,isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
    
  • PARI
    lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")););} \\ Michel Marcus, Feb 06 2015

Extensions

Edited by M. F. Hasler, Dec 08 2007
More terms from Max Alekseyev, Feb 06 2010

A385192 Primes p such that multiplicative order of 5 modulo p is odd.

Original entry on oeis.org

2, 11, 19, 31, 59, 71, 79, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 239, 251, 269, 271, 311, 331, 359, 379, 389, 401, 409, 419, 431, 439, 461, 479, 491, 499, 541, 569, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 829, 839, 859, 911, 919, 941, 971, 991
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

The multiplicative order of 5 modulo a(n) is A385193(n).
Contained in primes congruent to 1 or 4 modulo 5 (primes p such that 5 is a quadratic residue modulo p, A045468), and contains primes congruent to 11 or 19 modulo 20 (A122869).
Conjecture: this sequence has density 1/3 among the primes.

Examples

			101 is a term since 5^25 == 1 (mod 101).
		

Crossrefs

Subsequence of A040105, which (without the terms 2 and 5) is itself a subsequence of A045468.
Contains A122869 as a proper subsequence.
Cf. A385193 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), this sequence (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[5, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385192(p) = isprime(p) && (p!=5) && znorder(Mod(5,p))%2

A385220 Primes p such that multiplicative order of 3 modulo p is odd.

Original entry on oeis.org

2, 11, 13, 23, 47, 59, 71, 83, 107, 109, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709, 719, 733, 743, 757, 827, 829, 839, 863, 887, 911, 947, 971, 983
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of 3 modulo a(n) is A385226(n).
Without 2, contained in primes congruent to 1 or 11 modulo 12 (primes p such that 3 is a quadratic residue modulo p; A097933), and contains primes congruent to 11 modulo 12 (A068231).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

A068231 < this sequence < A045317 < A040101 < A097933 (ignoring terms 2, 3), where Ax < Ay means that Ax is a subsequence of Ay.
Complement of A301916 in {primes} \ {3}.
Cf. A385226 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), this sequence (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[3, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385220(p) = isprime(p) && (p!=3) && znorder(Mod(3,p))%2

A385224 Primes p such that multiplicative order of -4 modulo p is odd.

Original entry on oeis.org

5, 13, 29, 37, 41, 53, 61, 101, 109, 113, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 313, 317, 349, 373, 389, 397, 409, 421, 457, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 761, 773, 797, 809, 821, 829, 853, 857, 877, 941, 953, 997
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of -4 modulo a(n) is A385230(n).
Different from A133204: 593 is here but not in A133204, and 1601 is in A133204 but not here.
The sequence contains no primes congruent to 3 modulo 4 and all primes congruent to 5 modulo 8:
- If p is a term of this sequence, then -4 is a quadratic residue modulo p, so p == 1 (mod 4);
- For p == 1 (mod 4), we have (-4)^((p-1)/4) == (+-1+-i)^(p-1) == 1 (mod p), where i is a solution to i^2 == -1 (mod p).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

Subsequence of A002144 (primes congruent to 1 modulo 4).
Contains A007521 (primes congruent to 5 or modulo 8) as a proper subsequence.
Cf. A385230 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), this sequence (base -4), A385225 (base -5).
Cf. A133204.

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-4, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385224(p) = isprime(p) && (p!=2) && znorder(Mod(-4,p))%2

A385221 Primes p such that multiplicative order of 4 modulo p is odd.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 73, 79, 83, 89, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 233, 239, 251, 263, 271, 281, 283, 307, 311, 331, 337, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of 4 modulo a(n) is A385227(n).
Primes p such that neither ord(2,p) nor ord(-2,p) is divisible by 4, where ord(a,m) is the multiplicative order of a modulo m. (Note that we have either (a) ord(2,p) = ord(-2,p) and both are even; (b) ord(-2,p) = 2*ord(2,p), ord(2,p) is odd, ord(-2,p) == 2 (mod 4); or (c) ord(2,p) = 2*ord(-2,p), ord(-2,p) is odd, ord(2,p) == 2 (mod 4)).
Contains all primes congruent to 3 modulo 4 (A002145).
Conjecture: this sequence has density 7/12 among the primes (see A014663).

Crossrefs

Contains A002145, A014663, and A163183.
Cf. A385227 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), this sequence (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[4, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385221(p) = isprime(p) && (p!=2) && znorder(Mod(4,p))%2

A385223 Primes p such that multiplicative order of -3 modulo p is odd.

Original entry on oeis.org

2, 7, 19, 31, 37, 43, 61, 67, 79, 103, 127, 139, 151, 157, 163, 199, 211, 223, 271, 283, 307, 331, 349, 367, 373, 379, 397, 439, 463, 487, 499, 523, 547, 571, 607, 613, 619, 631, 643, 661, 691, 727, 739, 751, 787, 811, 823, 853, 859, 877, 883, 907, 919, 937, 967, 991, 997
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of -3 modulo a(n) is A385229(n).
Without 2, contained in primes congruent to 1 modulo 3 (primes p such that -3 is a quadratic residue modulo p, A002476), and contains primes congruent to 7 modulo 12 (A068229).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

Subsequence of A002476. Contains A068229 as a subsequence.
Cf. A385229 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), this sequence (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-3, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385223(p) = isprime(p) && (p!=3) && znorder(Mod(-3,p))%2

A385225 Primes p such that multiplicative order of -5 modulo p is odd.

Original entry on oeis.org

2, 3, 7, 23, 29, 43, 47, 61, 67, 83, 103, 107, 127, 163, 167, 223, 227, 229, 263, 283, 307, 347, 349, 367, 383, 421, 443, 449, 463, 467, 487, 503, 509, 521, 523, 547, 563, 587, 607, 643, 647, 661, 683, 701, 709, 727, 743, 761, 787, 821, 823, 827, 863, 883, 887, 907, 947, 967, 983
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of -5 modulo a(n) is A385231(n).
Contained in primes congruent to 1, 3, 7, 9 modulo 20 (primes p such that -5 is a quadratic residue modulo p, A139513), and contains primes congruent to 3, 7 modulo 20 (A122870).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

Subsequence of A139513. Contains A122870 as a subsequence.
Cf. A385231 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), this sequence (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-5, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385225(p) = isprime(p) && (p!=5) && znorder(Mod(-5,p))%2

A385228 Odd multiplicative orders of -2 modulo primes.

Original entry on oeis.org

1, 5, 9, 7, 29, 33, 41, 53, 65, 69, 81, 89, 105, 113, 25, 35, 47, 51, 15, 173, 189, 209, 221, 233, 245, 83, 261, 273, 281, 57, 293, 77, 309, 107, 329, 11, 115, 123, 393, 135, 413, 429, 441, 453, 473, 97, 509, 129, 131, 175, 545, 137, 561, 83, 585, 593, 149, 629, 641, 645, 653, 713, 725
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

a(n) is the multiplicative order of -2 modulo A163183(n).
Odd elements in A337878 (with first term changed to 1).

Crossrefs

Cf. A337878, A163183 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), A385227 (base 4), A385193 (base 5), this sequence (base -2), A385229 (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[-2, #] &, Prime[Range[250]]], OddQ] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    forprime(p=3, 1e4, z=znorder(Mod(-2, p)); if(z%2, print1(z, ", ")))

A051085 Primes p such that x^32 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123, 1163, 1171
Offset: 1

Views

Author

Keywords

Comments

Complement of A216747 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Crossrefs

Cf. A163183.

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^32 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^32 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    forprime(p=2, 2000, if([]~!=polrootsmod(x^32+2, p), print1(p, ", "))); print();
    /* Joerg Arndt, Jun 24 2012 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011
Showing 1-10 of 14 results. Next