cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A163183 Primes dividing 2^j + 1 for some odd j.

Original entry on oeis.org

3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Also the primes p for which ord_p(-2) is odd, as (-2)^j == 1 (mod p).
All such p are = 1 or 3 mod 8, so sequence is subsequence of A033200, as (-2)^{j+1} == -2 (mod p) implies that (-2/p) = 1, p == 1 or 3 (mod 8).
Claim: Sequence contains all primes = 3 mod 8, so contains A007520 as a subsequence.
Proof: If p = 8r + 3 then 2^{4r+1} == 1 or -1 (mod p). If former, then (2^{2r+1})^2 == 2 (mod p), (2/p) = 1, only true for p == 1 or 7 (mod 8). So p | 2^{4r+1} + 1.
Also contains some primes == 1 (mod 8), given in A163184. So sequence is a union of A007520 and A163184.
Claim: For every p in sequence and every 2^k, the equation x^{2^k} == -2 (mod p) is soluble. Hence sequence is a subsequence of A033203 (k=1), A051071 (k=2), A051073 (k=3), A051077 (k=4), A051085 (k=5), A051101 (k=6), ....
Proof: Put x == (-2)^u (mod p). Then using (-2)^j == 1 (mod p), we can solve x^{2^k} == -2 (mod p) if can find u and v such that u*2^k + v*j = 1, possible as gcd(2^k, j) = 1.
From Jianing Song, Jun 22 2025: (Start)
The multiplicative order of -2 modulo a(n) is A385228(n).
Contained in primes congruent to 1 or 3 modulo 8 (primes p such that -2 is a quadratic residue modulo p, A033200), and contains primes congruent to 3 modulo 8 (A007520).
Conjecture: this sequence has density 7/24 among the primes (see A014663). (End)

Examples

			11 is in sequence as 11 | 2^5 + 1; 281 (smallest element of the sequence == 1 (mod 8)) is in the sequence as 281 | 2^35 + 1.
		

Crossrefs

Sequence is a union of A007520 and A163184.
Subsequence of A033200. Contains A007520 as a subsequence.
Cf. A385228 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), this sequence (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Maple
    with(numtheory):A:=3:p:=3: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 then A:=A,p;;fi;od:A;
  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-2, #]] &] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(znorder(Mod(-2, p))%2, print1(p, ", "))); \\ Jinyuan Wang, Mar 23 2020

A139686 Odd multiplicative orders of 2 modulo primes.

Original entry on oeis.org

3, 11, 5, 23, 35, 9, 39, 11, 51, 7, 15, 83, 95, 99, 37, 29, 119, 131, 135, 155, 21, 179, 183, 191, 43, 73, 231, 239, 243, 251, 299, 25, 303, 45, 323, 359, 121, 371, 375, 411, 419, 431, 55, 443, 91, 153, 117, 483, 491, 495, 515, 519, 531, 543, 29, 575, 611, 615, 639
Offset: 1

Views

Author

Max Alekseyev, Apr 29 2008

Keywords

Comments

Subsequence of A014664, consisting of odd elements.

Crossrefs

Cf. A014664, A014663 (corresponding primes).
Cf. other bases: this sequence (base 2), A385226 (base 3), A385227 (base 4), A385193 (base 5), A385228 (base -2), A385229 (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    p = Select[Range[1000], PrimeQ]; Select[MultiplicativeOrder[2, #] & /@ p, OddQ] (* Amiram Eldar, Jul 30 2020 *)
  • PARI
    forprime(p=3,10^5,z=znorder(Mod(2,p));if(z%2,print1(z,", ")))

Formula

a(n) = multiplicative order of 2 modulo A014663(n).

A385193 Odd multiplicative orders of 5 modulo primes.

Original entry on oeis.org

1, 5, 9, 3, 29, 5, 39, 25, 27, 65, 69, 37, 75, 89, 15, 19, 33, 35, 119, 25, 67, 27, 155, 165, 179, 21, 97, 25, 17, 209, 215, 219, 115, 239, 245, 249, 135, 71, 285, 299, 309, 35, 329, 115, 359, 123, 375, 405, 9, 419, 429, 455, 459, 235, 485, 495, 509, 255, 515, 173, 525, 265, 267, 109, 575, 45
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

a(n) is the multiplicative order of 5 modulo A385192(n).
Odd elements in A211241.

Examples

			a(8) = 25 since it is the multiplicative order of 5 modulo A385192(8) = 101, and it is odd.
		

Crossrefs

Cf. A211241, A385192 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), A385227 (base 4), this sequence (base 5), A385228 (base -2), A385229 (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[5, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    forprime(p=2, 1e4, if(p!=5, z=znorder(Mod(5, p)); if(z%2, print1(z, ", "))))

A385226 Odd multiplicative orders of 3 modulo primes.

Original entry on oeis.org

1, 5, 3, 11, 23, 29, 35, 41, 53, 27, 65, 83, 89, 45, 95, 113, 57, 119, 125, 131, 69, 155, 39, 173, 179, 191, 209, 105, 43, 27, 221, 233, 239, 49, 251, 135, 281, 293, 299, 75, 323, 329, 31, 177, 359, 183, 371, 9, 413, 207, 419, 431, 443, 455, 473, 485, 491
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

a(n) is the multiplicative order of 3 modulo A385220(n).
Odd elements in A062117.

Crossrefs

Cf. A062117, A385220 (corresponding primes).
Cf. other bases: A139686 (base 2), this sequence (base 3), A385227 (base 4), A385193 (base 5), A385228 (base -2), A385229 (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[3, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    forprime(p=2, 1e4, if(p!=3, z=znorder(Mod(3, p)); if(z%2, print1(z, ", "))))

A385227 Odd multiplicative orders of 4 modulo primes.

Original entry on oeis.org

1, 3, 5, 9, 11, 5, 7, 23, 29, 33, 35, 9, 39, 41, 11, 51, 53, 7, 65, 69, 15, 81, 83, 89, 95, 99, 105, 37, 113, 29, 119, 25, 131, 135, 35, 47, 51, 155, 15, 21, 173, 179, 183, 189, 191, 209, 43, 73, 221, 231, 233, 239, 243, 245, 83, 251, 261, 273, 281, 57, 293
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

a(n) is the multiplicative order of 4 modulo A385221(n).
Odd elements in A082654.

Crossrefs

Cf. A082654, A385221 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), this sequence (base 4), A385193 (base 5), A385228 (base -2), A385229 (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[4, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    forprime(p=3, 1e4, z=znorder(Mod(4, p)); if(z%2, print1(z, ", ")))

A385229 Odd multiplicative orders of -3 modulo primes.

Original entry on oeis.org

1, 3, 9, 15, 9, 21, 5, 11, 39, 17, 63, 69, 25, 39, 81, 99, 105, 111, 15, 141, 17, 165, 87, 61, 93, 189, 99, 73, 231, 243, 83, 29, 7, 285, 303, 51, 103, 315, 107, 11, 345, 121, 369, 375, 131, 405, 411, 71, 429, 219, 63, 453, 153, 117, 161, 165, 83, 17, 519, 105, 531, 267, 543, 561, 117
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

Odd elements in A380482.
a(n) is the multiplicative order of -3 modulo A385223(n).

Crossrefs

Cf. A380482, A385223 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), A385227 (base 4), A385193 (base 5), A385228 (base -2), this sequence (base -3), A385230 (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[-3, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    forprime(p=2, 1e4, if(p!=3, z=znorder(Mod(-3, p)); if(z%2, print1(z, ", "))))

A385230 Odd multiplicative orders of -4 modulo primes.

Original entry on oeis.org

1, 3, 7, 9, 5, 13, 15, 25, 9, 7, 17, 37, 13, 43, 45, 49, 19, 67, 23, 73, 39, 79, 87, 93, 97, 11, 51, 105, 19, 115, 127, 65, 135, 139, 71, 37, 153, 163, 165, 169, 175, 177, 61, 189, 95, 193, 199, 101, 205, 207, 213, 107, 219, 235, 17, 83, 23, 85, 265, 89, 91, 277, 279, 141, 59, 75
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

Odd elements in A380531.
a(n) is the multiplicative order of -4 modulo A385224(n).

Crossrefs

Cf. A380531, A385224 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), A385227 (base 4), A385193 (base 5), A385228 (base -2), A385229 (base -3), this sequence (base -4), A385231 (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[-4, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    forprime(p=3, 1e4, z=znorder(Mod(-4, p)); if(z%2, print1(z, ", ")))

A385231 Odd multiplicative orders of -5 modulo primes.

Original entry on oeis.org

1, 1, 3, 11, 7, 21, 23, 15, 11, 41, 51, 53, 21, 27, 83, 111, 113, 57, 131, 141, 153, 173, 87, 61, 191, 105, 221, 7, 231, 233, 27, 251, 127, 5, 261, 273, 281, 293, 303, 107, 323, 165, 341, 175, 177, 363, 371, 19, 393, 205, 137, 59, 431, 63, 443, 453, 473, 483, 491, 177, 181, 551, 277, 187, 141
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

Odd elements in A380532.
a(n) is the multiplicative order of -5 modulo A385225(n).

Crossrefs

Cf. A380532, A385225 (corresponding primes).
Cf. other bases: A139686 (base 2), A385226 (base 3), A385227 (base 4), A385193 (base 5), A385228 (base -2), A385229 (base -3), A385230 (base -4), this sequence (base -5).

Programs

  • Mathematica
    Select[Map[MultiplicativeOrder[-5, #] &, Prime[Range[200]]], OddQ] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    forprime(p=2, 1e4, if(p!=5, z=znorder(Mod(-5, p)); if(z%2, print1(z, ", "))))
Showing 1-8 of 8 results.