cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163183 Primes dividing 2^j + 1 for some odd j.

Original entry on oeis.org

3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Also the primes p for which ord_p(-2) is odd, as (-2)^j == 1 (mod p).
All such p are = 1 or 3 mod 8, so sequence is subsequence of A033200, as (-2)^{j+1} == -2 (mod p) implies that (-2/p) = 1, p == 1 or 3 (mod 8).
Claim: Sequence contains all primes = 3 mod 8, so contains A007520 as a subsequence.
Proof: If p = 8r + 3 then 2^{4r+1} == 1 or -1 (mod p). If former, then (2^{2r+1})^2 == 2 (mod p), (2/p) = 1, only true for p == 1 or 7 (mod 8). So p | 2^{4r+1} + 1.
Also contains some primes == 1 (mod 8), given in A163184. So sequence is a union of A007520 and A163184.
Claim: For every p in sequence and every 2^k, the equation x^{2^k} == -2 (mod p) is soluble. Hence sequence is a subsequence of A033203 (k=1), A051071 (k=2), A051073 (k=3), A051077 (k=4), A051085 (k=5), A051101 (k=6), ....
Proof: Put x == (-2)^u (mod p). Then using (-2)^j == 1 (mod p), we can solve x^{2^k} == -2 (mod p) if can find u and v such that u*2^k + v*j = 1, possible as gcd(2^k, j) = 1.
From Jianing Song, Jun 22 2025: (Start)
The multiplicative order of -2 modulo a(n) is A385228(n).
Contained in primes congruent to 1 or 3 modulo 8 (primes p such that -2 is a quadratic residue modulo p, A033200), and contains primes congruent to 3 modulo 8 (A007520).
Conjecture: this sequence has density 7/24 among the primes (see A014663). (End)

Examples

			11 is in sequence as 11 | 2^5 + 1; 281 (smallest element of the sequence == 1 (mod 8)) is in the sequence as 281 | 2^35 + 1.
		

Crossrefs

Sequence is a union of A007520 and A163184.
Subsequence of A033200. Contains A007520 as a subsequence.
Cf. A385228 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), this sequence (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Maple
    with(numtheory):A:=3:p:=3: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 then A:=A,p;;fi;od:A;
  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-2, #]] &] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(znorder(Mod(-2, p))%2, print1(p, ", "))); \\ Jinyuan Wang, Mar 23 2020

A051101 Primes p such that x^64 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123, 1163, 1171, 1187
Offset: 1

Views

Author

Keywords

Comments

Differs from A051085 first at the 541st entry, at p=15809. - R. J. Mathar, Oct 14 2008
From Christopher J. Smyth, Jul 24 2009: (Start)
Differs from A163183 (primes dividing 2^j+1 for some odd j) at the 827th entry, at p=25601. See comment at A163186 for explanation.
Sequence is union of A163183 and A163186 (primes p such that the equation x^64 = -2 mod p has a solution, and ord_p(-2) is even).
(End)
Complement of A216777 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^64 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^64 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    forprime(p=2, 2000, if([]~!=polrootsmod(x^64+2, p), print1(p, ", "))); print();
    /* Joerg Arndt, Jun 24 2012 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A216747 Primes p such that x^32 = -2 has no solution mod p.

Original entry on oeis.org

5, 7, 13, 17, 23, 29, 31, 37, 41, 47, 53, 61, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 149, 151, 157, 167, 173, 181, 191, 193, 197, 199, 223, 229, 233, 239, 241, 257, 263, 269, 271, 277, 293, 311, 313, 317, 337, 349, 353, 359, 367, 373, 383, 389, 397
Offset: 1

Views

Author

Vincenzo Librandi, Sep 16 2012

Keywords

Comments

Complement of A051085 relative to A000040.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(400) | not exists{x : x in ResidueClassRing(p) | x^32 eq -2} ]; //
  • Mathematica
    ok[p_]:=Reduce[Mod[x^32 + 2, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok]

Extensions

Definition corrected by Georg Fischer, Feb 28 2021

A163184 Primes of the form 8k + 1 dividing 2^j + 1 for some odd j.

Original entry on oeis.org

281, 617, 1033, 1049, 1097, 1193, 1481, 1553, 1753, 1777, 2281, 2393, 2473, 2657, 2833, 2857, 3049, 3529, 3673, 3833, 4049, 4153, 4217, 4273, 4457, 4937, 5113, 5297, 5881, 6121, 6449, 6481, 6521, 6529, 6569, 6761, 6793, 6841, 7121, 7129, 7481, 7577, 7817, 8081, 8233, 8537, 9001, 9137, 9209, 9241
Offset: 1

Views

Author

Christopher J. Smyth, Jul 22 2009

Keywords

Comments

Each term p has the form 2^r*j + 1, where r >= 3, j is odd, and ord_p(-2) divides j.

Examples

			281 is in the sequence as 281 = 2^3*35 + 1 and 281 | 2^35 + 1.
		

Crossrefs

Set difference of A163183 and A007520.

Programs

  • Maple
    with(numtheory):A:=NULL:p:=2: for c to 500 do p:=nextprime(p);if order(-2,p) mod 2=1 and p mod 8 = 1 then A:=A,p;;fi;od:A;

Extensions

More terms from Max Alekseyev, Sep 29 2016
Showing 1-4 of 4 results.