A051081 Primes p such that x^24 = -2 has a solution mod p.
2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 881, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1307, 1427, 1451, 1459, 1481
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^24 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
-
Maple
isA051081 := proc(p) local x; for x from 0 to p-1 do if (x^24 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051081(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Oct 15 2008
-
Mathematica
ok[p_]:= Reduce[Mod[x^24 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
-
PARI
/* see A051071 */
Extensions
More terms from R. J. Mathar, Oct 15 2008
Comments