A051085 Primes p such that x^32 = -2 has a solution mod p.
2, 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 281, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1123, 1163, 1171
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A163183.
Programs
-
Magma
[p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^32 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^32 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
-
PARI
forprime(p=2, 2000, if([]~!=polrootsmod(x^32+2, p), print1(p, ", "))); print(); /* Joerg Arndt, Jun 24 2012 */
Extensions
More terms from Joerg Arndt, Jul 27 2011
Comments