cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051126 Table T(n,k) = n mod k read by downward antidiagonals (n >= 1, k >= 1).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 2, 0, 0, 0, 1, 2, 3, 1, 1, 0, 1, 2, 3, 0, 2, 0, 0, 1, 2, 3, 4, 1, 0, 1, 0, 1, 2, 3, 4, 0, 2, 1, 0, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 0, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 0, 1, 2, 3, 4, 5, 6, 7, 1, 3, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Keywords

Examples

			Table begins in row n=1:
  0  1  1  1  1  1  1  1  1  1 ...
  0  0  2  2  2  2  2  2  2  2 ...
  0  1  0  3  3  3  3  3  3  3 ...
  0  0  1  0  4  4  4  4  4  4 ...
  0  1  2  1  0  5  5  5  5  5 ...
  0  0  0  2  1  0  6  6  6  6 ...
  0  1  1  3  2  1  0  7  7  7 ...
  0  0  2  0  3  2  1  0  8  8 ...
  0  1  0  1  4  3  2  1  0  9 ...
  0  0  1  2  0  4  3  2  1  0 ...
  0  1  2  3  1  5  4  3  2  1 ...
  0  0  0  0  2  0  5  4  3  2 ...
  0  1  1  1  3  1  6  5  4  3 ...
		

Crossrefs

Programs

  • Mathematica
    TableForm[Table[Mod[n, k], {n, 1, 16}, {k, 1, 16}]] (* A051126 array *)
    Table[Mod[n - k + 1, k], {n, 16}, {k, n, 1, -1}] // Flatten  (* A051126 sequence *)
    (* Clark Kimberling, Feb 04 2016 *)

Formula

As a linear array, the sequence is a(n) = A002260(n) mod A004736 (n) or a(n) = (n-(t*(t+1)/2)) mod ((t*t+3*t+4)/2-n), where t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 19 2012
G.f. of the k-th column: x*Sum_{i=0..k-2} (i + 1)*x^i/(1 - x^k). - Stefano Spezia, May 08 2024

Extensions

More terms from James Sellers, Dec 11 1999