cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051136 Number of 2-colored generalized Frobenius partitions.

Original entry on oeis.org

1, 4, 9, 20, 42, 80, 147, 260, 445, 744, 1215, 1944, 3059, 4740, 7239, 10920, 16286, 24028, 35110, 50844, 73010, 104028, 147144, 206700, 288501, 400232, 552037, 757288, 1033495, 1403508, 1897088, 2552812, 3420527, 4564500, 6067265
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			1 + 4*x + 9*x^2 + 20*x^3 + 42*x^4 + 80*x^5 + 147*x^6 + 260*x^7 + ...
1/q + 4*q^11 + 9*q^23 + 20*q^35 + 42*q^47 + 80*q^59 + 147*q^71 + ...
		

References

  • G. E. Andrews, "Generalized Frobenius Partitions," AMS Memoir 301, 1984 (sequence is denoted c\phi_2(n)).
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 67, Eq. (7.20). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1)) / ((1 - x^(2*k-1))^3 * (1 - x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    QP = QPochhammer; s = QP[q^2]^5 / QP[q]^4 / QP[q^4]^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / eta(x + A)^4 / eta(x^4 + A)^2, n))} /* Michael Somos, Feb 12 2008 */

Formula

Expansion of phi(q) / f(-q)^2 in powers of q where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/12) * eta(q^2)^5 / (eta(q)^4 * eta(q^4)^2) in powers of q. - Michael Somos, Apr 25 2003
Euler transform of period 4 sequence [4, -1, 4, 1, ...]. - Michael Somos, Apr 25 2003
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 24^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A137828.
G.f.: Product_{k>0} (1 -x^(4*k-2)) / ((1 - x^(2*k-1))^4 * (1 - x^(4*k))). [Andrews, Memoir, p. 13, equation (5.17)]
G.f.: Product_{k>0} (1 + x^k)^3 / ((1 - x^k) * (1 + x^(2*k))^2). - Michael Somos, Feb 12 2008
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Aug 31 2015