A051144 Nonsquarefree nonsquares: each term has a square factor but is not a perfect square itself.
8, 12, 18, 20, 24, 27, 28, 32, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180
Offset: 1
Examples
63 is included because 63 = 3^2 * 7. 64 is not included because it is a perfect square (8^2). 65 is not included because it is squarefree (5 * 13).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Square Number.
- Eric Weisstein's World of Mathematics, Squarefree.
- Wikipedia, Square number.
- Wikipedia, Squarefree integer.
Crossrefs
Programs
-
Haskell
a051144 n = a051144_list !! (n-1) a051144_list = filter ((== 0) . a008966) a000037_list -- Reinhard Zumkeller, Sep 02 2013, Jan 24 2013
-
Magma
[k:k in [1..200]| not IsSquare(k) and not IsSquarefree(k)]; // Marius A. Burtea, Dec 29 2019
-
Maple
N:= 10000; # to get all entries up to N A051144:= remove(numtheory:-issqrfree,{$1..N}) minus {seq(i^2,i=1..floor(sqrt(N)))}: # Robert Israel, Mar 30 2014
-
Mathematica
searchMax = 32; Complement[Select[Range[searchMax^2], MoebiusMu[#] == 0 &], Range[searchMax]^2] (* Alonso del Arte, Dec 20 2019 *)
-
PARI
is(n)=!issquare(n) && !issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from math import isqrt from sympy import mobius def A051144(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n-1+(y:=isqrt(x))+sum(mobius(k)*(x//k**2) for k in range(1, y+1))) return bisection(f,n,n) # Chai Wah Wu, Mar 23 2025
Formula
(1 - A008966(a(n)))*(1 - A010052(a(n))) = 1; A008966(a(n)) + A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 24 2013
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(2*s) - zeta(s)/zeta(2*s), for s > 1. - Amiram Eldar, Dec 03 2022
Extensions
Incorrect comment removed by Charles R Greathouse IV, Mar 19 2010
Offset corrected by Reinhard Zumkeller, Jan 24 2013
Comments