A051160 Coefficients in expansion of (1-x)^floor(n/2)(1+x)^ceiling(n/2).
1, 1, 1, 1, 0, -1, 1, 1, -1, -1, 1, 0, -2, 0, 1, 1, 1, -2, -2, 1, 1, 1, 0, -3, 0, 3, 0, -1, 1, 1, -3, -3, 3, 3, -1, -1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 1, -4, -4, 6, 6, -4, -4, 1, 1, 1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1, 1, 1, -5, -5, 10, 10, -10, -10, 5, 5, -1, -1, 1, 0, -6, 0, 15, 0, -20
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 0, -1; 1, 1, -1, -1; 1, 0, -2, 0, 1; 1, 1, -2, -2, 1, 1; ...
Links
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 3.
Programs
-
Maple
A051160 := proc(n,k) (1-x)^floor(n/2)*(1+x)^ceil(n/2) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Apr 08 2013
-
Mathematica
t[n_, k_] := Coefficient[(1-x)^Floor[n/2]*(1+x)^Ceiling[n/2], x, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
-
PARI
{T(n, k) = polcoeff( (1 - x)^(n\2) * (1 + x)^ceil(n/2), k)}
Formula
T(n, k) = -T(n-2, k-2) + T(n-2, k). T(0, 0) = T(1, 0) = T(1, 1) = 1.
T(n,k) = T(n-1,k) + (-1)^(n-1)*T(n-1,k-1), T(0,0)=1. - Jose Ramon Real, Nov 10 2007
G.f.: (1+x+x*y)/(1-x^2+x^2*y^2). - Philippe Deléham, Oct 21 2013
Comments