cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jose Ramon Real

Jose Ramon Real's wiki page.

Jose Ramon Real has authored 4 sequences.

A145324 Triangle read by rows: coefficients of 1; 1(X+2); 1(X+2)(X+3); 1(X+2)(X+3)(X+4); ....

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 9, 26, 24, 1, 14, 71, 154, 120, 1, 20, 155, 580, 1044, 720, 1, 27, 295, 1665, 5104, 8028, 5040, 1, 35, 511, 4025, 18424, 48860, 69264, 40320, 1, 44, 826, 8624, 54649, 214676, 509004, 663696, 362880, 1, 54, 1266, 16884, 140889, 761166
Offset: 1

Author

Jose Ramon Real, Oct 07 2008

Keywords

Comments

The last number of row n is n!.
Essentially the triangle given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 09 2008
T(n+1,k+1) = a_k(2,3,...,n+1), n >= 0, k = 0..n, with the elementary symmetric function a_k(x[1],x[2],...,x[n]), with a_0(0):=1. E.g., a_2(2,3,4) = 2*3 + 2*4 + 3*4 = 26 = T(4,3). - Wolfdieter Lang, Oct 24 2011

Examples

			From _Wolfdieter Lang_, Oct 24 2011: (Start)
n\k 1  2   3    4     5    6     7 ...
1:  1
2:  1  2
3:  1  5   6
4:  1  9  26   24
5:  1 14  71  154   120
6:  1 20 155  580  1044  720
7:  1 27 295 1665  5104 8028  5040
...
T(4,3)= 26 = |s(5,3)| - |s(5,4)| + |s(5,5)| = 35 - 10 + 1.
(End)
		

Programs

  • Maple
    A145324 := proc(n,k) coeftayl( 1*mul(x+i,i=2..n),x=0,n-k) ; end: for n from 1 to 11 do for k from 1 to n do printf("%d,",A145324(n,k)) ; od: od: # R. J. Mathar, Oct 10 2008
  • Mathematica
    Table[Reverse[CoefficientList[Product[x+j, {j, 2, k}], x]], {k, 1, 15}] // Flatten (* Robert A. Russell, Sep 29 2018 *)

Formula

T(n,k) = A143491(n+1,n+2-k). - R. J. Mathar, Oct 10 2008
T(n,k) = Sum_{m=0..k-1} (-1)^m*|s(n+1, n+2-k+m)|, n >= 1, k = 1..n, with the Stirling numbers of the first kind s(n,k) = A048994(n,k). - Wolfdieter Lang, Oct 24 2011
T(n,k) = T(n-1,k)+n*T(n-1,k-1). - Mikhail Kurkov, Jun 26 2018

Extensions

More terms from R. J. Mathar, Oct 10 2008

A135299 Pascal's triangle, but the last element of the row is the sum of all the previous terms.

Original entry on oeis.org

1, 1, 2, 1, 3, 8, 1, 4, 11, 32, 1, 5, 15, 43, 128, 1, 6, 20, 58, 171, 512, 1, 7, 26, 78, 229, 683, 2048, 1, 8, 33, 104, 307, 912, 2731, 8192, 1, 9, 41, 137, 411, 1219, 3643, 10923, 32768, 1, 10, 50, 178, 548, 1630, 4862, 14566, 43691, 131072
Offset: 0

Author

Jose Ramon Real, Dec 04 2007

Keywords

Examples

			T(2,1) = T(1,0) + T(1,1) = 1 + 2 = 3;
T(2,2) = T(0,0) + T(1,0) + T(1,1) + T(2,0) + T(2,1) = 1 + 1 + 2 + 1 + 3 = 8.
From _G. C. Greubel_, Oct 09 2016: (Start)
The triangle is:
  1;
  1, 2;
  1, 3,  8;
  1, 4, 11, 32;
  1, 5, 15, 43, 128;
  1, 6, 20, 58, 171, 512;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[n_, 0] := 1; T[n_, k_] := T[n - 1, k] + T[n - 1, k - 1]; T[n_, n_] := 2^(2*n - 1); Table[T[n, k], {n, 0, 5}, {k, 0, n}] (* G. C. Greubel, Oct 09 2016 *)

Formula

T(0,0) = 1;
T(n,0) = 1;
T(n,k) = T(n-1, k-1) + T(n-1, k) if k < n;
T(n,n) = (Sum_{j=0..n-1} Sum_{i=0..j} T(j,i)) + Sum_{i=0..n-1} T(n,i) [i.e., sum of all earlier terms of the triangle].
T(n,n) = (4^n)/2 for n > 0;
T(n,n) = 2*Sum_{i=0..n-1} T(n,i).

A131183 a(n) = a(n-1) + a(n-2) if n == 3 mod 4; a(n) = a(n-1) - a(n-2) if n == 0 mod 4; a(n) = a(n-1)*a(n-2) if n == 1 mod 4; and a(n) = a(n-1)/a(n-2) if n == 2 mod 4; with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 2, 8, 4, 12, 8, 96, 12, 108, 96, 10368, 108, 10476, 10368, 108615168, 10476, 108625644, 108615168, 11798392572168192, 108625644, 11798392680793836, 11798392572168192, 139202068568601556987554268864512
Offset: 1

Author

Jose Ramon Real, Oct 22 2007

Keywords

Comments

If S(n)=a(4n-1) (i.e., term "+"), R(n)=a(4n) (i.e., "-"), P(n)=a(4n+1), D(n)=a(4n+2) then D(n)=S(n), P(n)=S(n+1)-S(n), R(n+1)=P(n)=S(n+1)-S(n). - Jose Ramon Real, Nov 10 2007

Examples

			a(3) = a(2) + a(1) = 1 + 1 = 2;
a(4) = a(3) - a(2) = 2 - 1 = 1;
a(5) = a(4) * a(3) = 1 * 2 = 2;
a(6) = a(5) / a(4) = 2 / 1 = 2.
		

Programs

  • Maple
    A131183 := proc(n) option remember ; if n <= 2 then 1 ; elif n mod 4 = 3 then A131183(n-1)+A131183(n-2) ; elif n mod 4 = 0 then A131183(n-1)-A131183(n-2) ; elif n mod 4 = 1 then A131183(n-1)*A131183(n-2) ; else A131183(n-1)/A131183(n-2) ; fi ; end: seq(A131183(n),n=1..35) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    a[1]=a[2]=1; a[n_] := a[n] = Switch[Mod[n, 4], 3, a[n-1]+a[n-2], 0, a[n-1]-a[n-2], 1, a[n-1]*a[n-2], 2, a[n-3]]; Array[a, 30] (* Jean-François Alcover, Dec 28 2015 *)
    nxt[{n_,a_,b_}]:=Module[{m=Mod[n+1,4]},{n+1,b,Which[m==3,a+b,m==0,b-a, m==1,a*b,m==2,b/a]}]; Join[{1,1,2},NestList[nxt,{1,1,2},30][[All,2]]] (* Harvey P. Dale, Sep 04 2017 *)

Extensions

More terms from R. J. Mathar, Oct 28 2007

A128920 Sum of all the factors in all the ways to write n as n = x*y*z with 1 <= x <= y <= z <= n.

Original entry on oeis.org

3, 4, 5, 11, 7, 14, 9, 23, 18, 20, 13, 38, 15, 26, 26, 46, 19, 50, 21, 54, 34, 38, 25, 83, 38, 44, 51, 70, 31, 86, 33, 88, 50, 56, 50, 136, 39, 62, 58, 119, 43, 112, 45, 102, 92, 74, 49, 181, 66, 108, 74, 118, 55, 150, 74, 155, 82, 92, 61, 233, 63, 98, 120, 185, 86, 164, 69
Offset: 1

Author

Jose Ramon Real, Oct 23 2007

Keywords

Examples

			a(6)=14 because 6 = 6*1*1 = 3*2*1 and 6+1+1+3+2+1 = 14.
		

Crossrefs

Cf. A034836.

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009