cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000096 a(n) = n*(n+3)/2.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - Robert G. Wilson v
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - Benoit Cloitre, Aug 18 2002
Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - Jon Wild, May 07 2004
Coefficient of x^2 in (1 + x + 2*x^2)^n. - Michael Somos, May 26 2004
a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - Andrew S. Plewe, Jun 18 2005
Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - Alexander Adamchuk, Apr 11 2006
Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - Camillia Smith Barnes, Oct 04 2008
If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - Gary Detlefs, Mar 04 2010
The only primes are a(1) = 2 and a(2) = 5. - Reinhard Zumkeller, Jul 18 2011
a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - Zak Seidov, Jan 22 2012
For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - Joerg Arndt, Jun 24 2012
On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - Jose Abutal, Nov 19 2013
If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - Michael Somos, Nov 11 2015
a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - Wolfdieter Lang, Dec 10 2015
Numbers k such that 8k + 9 is a square. - Juri-Stepan Gerasimov, Apr 05 2016
Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - Gregory Gerard Wojnar, Jul 19 2017
For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - Felipe Pedraza-Oropeza, Dec 07 2017
For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - Felipe Pedraza-Oropeza, Jan 11 2018
a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - J. M. Bergot, Jan 25 2018
Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - Muniru A Asiru, Jan 25 2018
a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - Eric W. Weisstein, Apr 11 2018
a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - Omar E. Pol, Sep 04 2018
For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - Tom Copeland, Jan 03 2021
For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - Christian Barrientos, Jun 13 2022
For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - Zbigniew Wojciechowski, Mar 31 2023
a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - Nicholas Stefan Georgescu, Jun 09 2024

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
  • G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
  • D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.

Programs

Formula

G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
2*a(n) = A008778(n) - A105163(n). - Creighton Dement, Apr 15 2005
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A067550(n+1) / A067550(n). - Alexander Adamchuk, May 20 2006
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - K.V.Iyer, Apr 27 2009
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = 2*A000290(n+3) - 3*A000217(n+3). - J. M. Bergot, Apr 04 2018
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025

A008276 Triangle of Stirling numbers of first kind, s(n, n-k+1), n >= 1, 1 <= k <= n. Also triangle T(n,k) giving coefficients in expansion of n!*binomial(x,n)/x in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -6, 11, -6, 1, -10, 35, -50, 24, 1, -15, 85, -225, 274, -120, 1, -21, 175, -735, 1624, -1764, 720, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 1, -36, 546, -4536, 22449, -67284, 118124, -109584, 40320, 1, -45
Offset: 1

Views

Author

Keywords

Comments

n-th row of the triangle = charpoly of an (n-1) X (n-1) matrix with (1,2,3,...) in the diagonal and the rest zeros. - Gary W. Adamson, Mar 19 2009
From Daniel Forgues, Jan 16 2016: (Start)
For n >= 1, the row sums [of either signed or absolute values] are
Sum_{k=1..n} T(n,k) = 0^(n-1),
Sum_{k=1..n} |T(n,k)| = T(n+1,1) = n!. (End)
The moment generating function of the probability density function p(x, m=q, n=1, mu=q) = q^q*x^(q-1)*E(x, q, 1)/(q-1)!, with q >= 1, is M(a, m=q, n=1, mu=q) = Sum_{k=0..q}(A000312(q) / A000142(q-1)) * A008276(q, k) * polylog(k, a) / a^q , see A163931 and A274181. - Johannes W. Meijer, Jun 17 2016
Triangle of coefficients of the polynomial x(x-1)(x-2)...(x-n+1), also denoted as falling factorial (x)n, expanded into decreasing powers of x. - _Ralf Stephan, Dec 11 2016

Examples

			3!*binomial(x,3) = x*(x-1)*(x-2) = x^3 - 3*x^2 + 2*x.
Triangle begins
  1;
  1,  -1;
  1,  -3,   2;
  1,  -6,  11,   -6;
  1, -10,  35,  -50,  24;
  1, -15,  85, -225, 274, -120;
...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), p. 257.

Crossrefs

See A008275 and A048994, which are the main entries for this triangle of numbers.
See A008277 triangle of Stirling numbers of the second kind, S2(n,k).

Programs

  • Haskell
    a008276 n k = a008276_tabl !! (n-1) !! (k-1)
    a008276_row n = a008276_tabl !! (n-1)
    a008276_tabl = map init $ tail a054654_tabl
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Maple
    seq(seq(coeff(expand(n!*binomial(x,n)),x,j),j=n..1,-1),n=1..15); # Robert Israel, Jan 24 2016
    A008276 := proc(n, k): combinat[stirling1](n, n-k+1) end: seq(seq(A008276(n, k), k=1..n), n=1..9); # Johannes W. Meijer, Jun 17 2016
  • Mathematica
    len = 47; m = Ceiling[Sqrt[2*len]]; t[n_, k_] = StirlingS1[n, n-k+1]; Flatten[Table[t[n, k], {n, 1, m}, {k, 1, n}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011 *)
    Flatten@Table[CoefficientList[Product[1-k x, {k, 1, n}], x], {n, 0, 8}] (* Oliver Seipel, Jun 14 2024 *)
    Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Reverse@Range[n]], {n, Range[9]}] (* Oliver Seipel, Jun 14 2024, after  Ralf Stephan *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),n-k+1))
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff(y*(1+y*x+x*O(x^n))^(1/y),n),k))
    
  • Sage
    def T(n,k): return falling_factorial(x,n).expand().coefficient(x,n-k+1) # Ralf Stephan, Dec 11 2016

Formula

n!*binomial(x, n) = Sum_{k=1..n-1} T(n, k)*x^(n-k).
|A008276(n, k)| = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]; A008276(n, k) = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, ...]. Here DELTA is the operator defined in A084938. - Philippe Deléham, Dec 30 2003
|T(n, k)| = Sum_{m=0..n} A008517(k, m+1)*binomial(n+m, 2*(k-1)), n >= k >= 1. A008517 is the second-order Eulerian triangle. See the Graham et al. reference p. 257, eq. (6.44).
A094638 formula for unsigned T(n, k).
|T(n, k)| = Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*binomial(n-1, k-1+m) if n >= k >= 1, else 0. - Wolfdieter Lang, Sep 12 2005, see A112486.
|T(n, k)| = (f(n-1, k-1)/(2*(k-1))!)* Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*f(2*(k-1), k-1-m)*f(n-k, m) if n >= k >= 1, else 0, where f(n, k) stands for the falling factorial n*(n-1)*...*(n-(k-1)) and f(n, 0):=1. - Wolfdieter Lang, Sep 12 2005, see A112486.
With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = (1-t)*(1-2*t)*...*(1-(n-1)t) and P(0,t) = 1, exp(P(.,t)*x) = (1+t*x)^(1/t) . Compare A094638. T(n,k+1) = (1/k!) (D_t)^k (D_x)^n ( (1+t*x)^(1/t) - 1 ) evaluated at t=x=0 . - Tom Copeland, Dec 09 2007
Product_{i=1..n} (x-i) = Sum_{k=0..n} T(n,k)*x^k. - Reinhard Zumkeller, Dec 29 2007
E.g.f.: Sum_{n>=0} (Sum_{k=0..n} T(n,n-k)*t^k)/n!) = Sum_{n>=0} (x)n * t^k/n! = exp(x * log(1+t)), with (x)_n the n-th falling factorial polynomial. - _Ralf Stephan, Dec 11 2016
Sum_{j=0..m} T(m, m-j)*s2(j+k+1, m) = m^k, where s2(j, m) are Stirling numbers of the second kind. - Tony Foster III, Jul 25 2019
For n>=2, Sum_{k=1..n} k*T(n,k) = (-1)^(n-1)*(n-2)!. - Zizheng Fang, Dec 27 2020

A001701 Generalized Stirling numbers.

Original entry on oeis.org

1, 6, 26, 71, 155, 295, 511, 826, 1266, 1860, 2640, 3641, 4901, 6461, 8365, 10660, 13396, 16626, 20406, 24795, 29855, 35651, 42251, 49726, 58150, 67600, 78156, 89901, 102921, 117305, 133145, 150536, 169576, 190366, 213010, 237615, 264291, 293151, 324311
Offset: 1

Views

Author

Keywords

Comments

For n>3, a(n-2) gives the number of bounded regions created when the pairwise perpendicular bisectors of n points divide the Euclidean plane into a maximum of A308305(n) regions. This is also equivalent to the number of regions lost from A308305(n) when n>3 points move from maximal position to a circle. - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 26 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A059302(n+2) + 1, n>1. Partial sums of A005564.
For n>1, a(n) = A145324(n+1,3).

Programs

  • GAP
    Concatenation([1],List([2..40],n->n*(n-1)*(3*n^2+17*n+26)/24)); # Muniru A Asiru, Sep 29 2018
    
  • Magma
    [1] cat [n*(n-1)*(3*n^2 + 17*n + 26)/24: n in [2..40]]; // Vincenzo Librandi, Sep 30 2018
    
  • Maple
    A001701 := proc(n)
        if n = 1 then
            1;
        else
            n*(n-1)*(3*n^2+17*n+26)/24 ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    f[k_] := k + 1; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[2, t[n]]; Join[{1}, Table[a[n], {n, 2, 30}]] (* Clark Kimberling, Dec 31 2011 *)
    Join[{1}, Table[n (n - 1) (3 n^2 + 17 n + 26) / 24, {n, 2, 40}]] (* Vincenzo Librandi, Sep 30 2018 *)
    CoefficientList[Series[(-1 - x - 6 x^2 + 9 x^3 - 5 x^4 + x^5)/(-1 + x)^5, {x, 0, 30}], x] (* Stefano Spezia, Sep 30 2018 *)
    Prepend[Table[Coefficient[Product[x+j, {j,2,k}], x, k-3], {k,3,40}],1] (* or *) Prepend[LinearRecurrence[{5, -10, 10, -5, 1}, {6, 26, 71, 155, 295}, 40],1] (*Robert A. Russell, Oct 04 2018 *)
  • PARI
    Vec(x*(-1-x-6*x^2+9*x^3-5*x^4+x^5)/(-1+x)^5+O(x^30)) \\ Stefano Spezia, Sep 30 2018

Formula

a(n) = n*(n-1)*(3n^2 + 17n + 26)/24, n > 1.
G.f.: z*(-1-z-6*z^2+9*z^3-5*z^4+z^5)/(z-1)^5. - Simon Plouffe in his 1992 dissertation
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i) * Product_{j=0..k-1} (-a - j), then a(n) = f(n,n-2,2), for n >= 2. - Milan Janjic, Dec 20 2008
For n>1, a(n) = A308305(n+2) - (n^2 + 3n + 2). - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 20 2019
E.g.f.: x + (1/24)*exp(x)*x^2*(72 + 32*x + 3*x^2). - Stefano Spezia, Sep 07 2019
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Colin Barker, Jul 08 2020

A049444 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -2, 1, 6, -5, 1, -24, 26, -9, 1, 120, -154, 71, -14, 1, -720, 1044, -580, 155, -20, 1, 5040, -8028, 5104, -1665, 295, -27, 1, -40320, 69264, -48860, 18424, -4025, 511, -35, 1, 362880, -663696, 509004, -214676, 54649, -8624, 826, -44, 1, -3628800, 6999840, -5753736
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = ^2P_n^k in the notation of the given reference with T(0, 0) := 1. The monic row polynomials s(n,x) := Sum_{m=0..n} T(n, k)*x^k which are s(n, x) = Product_{j=0..n-1} (x-(2+j)), n >= 1 and s(0, x)=1 satisfy s(n, x+y) = Sum_{k=0..n} binomial(n, k)*s(k,x)*S1(n-k, y), with the Stirling1 polynomials S1(n, x) = Sum_{m=1..n} (A008275(n, m)*x^m) and S1(0, x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n, x) polynomials are called Sheffer polynomials for (exp(2*t), exp(t)-1). This translates to the usual exponential Riordan (Sheffer) notation (1/(1+x)^2, log(1+x)).
See A143491 for the unsigned version of this array and A143494 for the inverse. - Peter Bala, Aug 25 2008
Corresponding to the generalized Stirling number triangle of second kind A137650. - Peter Luschny, Sep 18 2011
Unsigned, reversed rows (cf. A145324, A136124) are the dimensions of the cohomology of a complex manifold with a symmetric group (S_n) action. See p. 17 of the Hyde and Lagarias link. See also the Murri link for an interpretation as the Betti numbers of the moduli space M(0,n) of smooth Riemann surfaces. - Tom Copeland, Dec 09 2016
The row polynomials s(n, x) = (-1)^n*risingfactorial(2 - x, n) are related to the column sequences of the unsigned Abel triangle A137452(n, k), for k >= 2. See the formula there. - Wolfdieter Lang, Nov 21 2022

Examples

			The Triangle  begins:
n\k       0       1        2       3       4      5      6    7   8 9 ...
0:        1
1:       -2       1
2:        6      -5        1
3:      -24      26       -9       1
4:      120    -154       71     -14       1
5      -720    1044     -580     155     -20      1
6:     5040   -8028     5104   -1665     295    -27      1
7:   -40320   69264   -48860   18424   -4025    511    -35    1
8:   362880 -663696   509004 -214676   54649  -8624    826  -44
9: -3628800 6999840 -5753736 2655764 -761166 140889 -16884 1266 -54 1
...  [reformatted by _Wolfdieter Lang_, Nov 21 2022]
		

References

  • Y. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Math. Soc. Colloquium Publications Vol. 47, 1999. [From Tom Copeland, Jun 29 2008]
  • S. Roman, The Umbral Calculus, Academic Press, 1984 (also Dover Publications, 2005).

Crossrefs

Unsigned column sequences are A000142(n+1), A001705-A001709. Row sums (signed triangle): n!*(-1)^n, row sums (unsigned triangle): A001710(n-2). Cf. A008275 (Stirling1 triangle).

Programs

  • Haskell
    a049444 n k = a049444_tabl !! n !! k
    a049444_row n = a049444_tabl !! n
    a049444_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 2)
    -- Reinhard Zumkeller, Mar 11 2014
  • Maple
    A049444_row := proc(n) local k,i;
    add(add(Stirling1(n, n-i), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,k),k=1..n-1) end:
    seq(print(A049444_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
    A049444:= (n, k)-> add((-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k), j=0..n):
    seq(print(seq(A049444(n, k), k=0..n)), n=0..11);  # Mélika Tebni, May 02 2022
  • Mathematica
    t[n_, i_] = Sum[(-1)^k*Binomial[n, k]*(k+1)!*StirlingS1[n-k, i], {k, 0, n-i}]; Flatten[Table[t[n, i], {n, 0, 9}, {i, 0, n}]] [[1 ;; 48]]
    (* Jean-François Alcover, Apr 29 2011, after Milan Janjic *)

Formula

T(n, k) = T(n-1, k-1) - (n+1)*T(n-1, k), n >= k >= 0; T(n, k) = 0, n < k; T(n, -1) = 0, T(0, 0) = 1.
E.g.f. for k-th column of signed triangle: ((log(1+x))^k)/(k!*(1+x)^2).
Triangle (signed) = [-2, -1, -3, -2, -4, -3, -5, -4, -6, -5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...], where DELTA is Deléham's operator defined in A084938 (unsigned version in A143491).
E.g.f.: (1 + x)^(y-2). - Vladeta Jovovic, May 17 2004 [For row polynomials s(n, y)]
With P(n, t) = Sum_{j=0..n-2} T(n-2,j) * t^j and P(1, t) = -1 and P(0, t) = 1, then G(x, t) = -1 + exp[P(.,t)*x] = [(1+x)^t - 1 - t^2 * x] / [t(t-1)], whose compositional inverse in x about 0 is given in A074060. G(x, 0) = -log(1+x) and G(x, 1) = (1+x) log(1+x) - 2x. G(x, q^2) occurs in formulas on pages 194-196 of the Manin reference. - Tom Copeland, Feb 17 2008
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then T(n,i) = f(n,i,2), for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
T(n, k) = Sum_{j=0..n} (-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k). - Mélika Tebni, May 02 2022
From Wolfdieter Lang, Nov 24 2022: (Start)
Recurrence for row polynomials {s(n, x)}_{n>=0}: s(0, x) = 1, s(n, x) = (x - 2)*exp(-(d/dx)) s(n-1, x), for n >= 1. This is adapted from the general Sheffer result given by S. Roman, Corollary 3.7.2., p. 50.
Recurrence for column sequence {T(n, k)}{n>=k}: T(n, n) = 1, T(n, k) = (n!/(n-k))*Sum{j=k..n-1} (1/j!)*(a(n-1-j) + k*beta(n-1-j))*T(n-1, k), for k >= 0, where alpha = repeat(-2, 2) and beta(n) = [x^n] (d/dx)log(log(x)/x) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), for n >= 0. This is the adapted Boas-Buck recurrence, also given in Rainville, Theorem 50., p. 141, For the references and a comment see A046521. (End)

Extensions

Second formula corrected by Philippe Deléham, Nov 09 2008

A196841 Table of the elementary symmetric functions a_k(1,3,4,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 19, 12, 1, 13, 59, 107, 60, 1, 19, 137, 461, 702, 360, 1, 26, 270, 1420, 3929, 5274, 2520, 1, 34, 478, 3580, 15289, 36706, 44712, 20160, 1, 43, 784, 7882, 47509, 174307, 375066, 422568, 181440, 1, 53, 1214, 15722, 126329, 649397
Offset: 0

Views

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

The elementary symmetric functions are defined by product(1-x[j]*x,j=1..n)=: sum((-1)^k*a_k(x[1],x[2],...,x[n])*x^k ,k=0..n), n>=1. Here x[1]=1 and x[j]=j+1 for j=2,..,n.
This triangle is the row reversed version of |A123319|.
In general, the triangle S_j(n,k), lists for n>=j the elementary symmetric functions
a_k(1,2,...,j-1,j+1,...,n+1), k=0..n. For 0<=n
For j=0 one takes a_0(n,k) = a_k(1,2,...,n) which is A094638(n+1,k+1). a_1(n,k)=a_k(2,3,....,n+1)= A145324(n+1,k+1). The present triangle a(n,k) equals S_2(n,k).
The first j rows of the triangle S_j(n,k) coincide with the ones of triangle A094638.
The following rows (n>=j) of S_j(n,k) are given by
sum((-j)^m*|s(n+2,n+2-k+m)|,m=0..k), with the Stirling numbers of the first kind s(n,m) = A048994(n,m). The proof is done by iterating the obvious recurrence S_j(l,m) = a_m(1,2,...,l+1) - j*S_j(l,m-1), using a_k(1,2,...,n) = |s(n+1,n+1-m)|, For a proof of the last equation see, e.g., the Stanley reference, p. 19, Second Proof.

Examples

			n\k  0   1   2    3     4      5      6      7  ...
0:   1
1:   1   1
2:   1   4   3
3:   1   8  19   12
4:   1  13  59  107    60
5:   1  19 137  461   702    360
6:   1  26 270 1420  3929   5274   2520
7:   1  34 478 3580 15289  36706  44712  20160
...
a(3,2) = 1*3+1*4+3*4 = 19.
a(3,2) = |s(5,3)| - 2*|s(5,4)| + 4*|s(5,5)| = 35-2*10+4*1 = 19.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

Crossrefs

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<2, and a_k(1,3,4,...,n+1) if n>=2, for k=0..n, with the elementary symmetric functions a_k defined above in a comment.
a(n,k) = 0 if n
= sum((-2)^m*|s(n+2,n+2-k+m)|,m=0..k) if n>=2, with the Stirling numbers of the first kind s(n,m) = A048994(n,m).

A196842 Table of the elementary symmetric functions a_k(1,2,4,5,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 8, 1, 12, 49, 78, 40, 1, 18, 121, 372, 508, 240, 1, 25, 247, 1219, 3112, 3796, 1680, 1, 33, 447, 3195, 12864, 28692, 32048, 13440, 1, 42, 744, 7218, 41619, 144468, 290276, 301872, 120960, 1, 52, 1164, 14658, 113799, 560658, 1734956, 3204632, 3139680, 1209600
Offset: 0

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[1]=1, x[2]=2, and x[j]=j+1 for j=3,...,n. This is the triangle S_3(n,k), n>=0, k=0..n. The first three rows coincide with those of triangle A094638.

Examples

			n\k   0    1    2     3      4      5     6       7  ...
0:    1
1:    1    1
2:    1    3    2
3:    1    7   14     8
4:    1   12   49    78     40
5:    1   18  121   372    508    240
6:    1   25  247  1219   3112   3796   1680
7:    1   33  447  3195  12864  28692  32048  13440
...
a(1,0) = a_0(1):= 1, a(1,1) = a_1(1)= 1.
a(3,2) = a_2(1,2,4) = 1*2 + 1*4 + 2*4 = 14.
a(3,2) = 1*|s(5,3)| - 3*|s(5,4)| + 9*|s(5,5)| = 1*35-3*10+9*1 = 14.
		

Crossrefs

Cf. A094638, A145324,|A123319|, A196841, A055998 (column k=1), A002301 (diagonal), A277132 (subdiagonal).

Programs

  • Maple
    A196842 := proc(n,k)
        if n = 1 and k =1 then
            1 ;
        else
            add( abs( combinat[stirling1](n+2,n+2-k+m))*(-3)^m,m=0..k) ;
        end if;
    end proc: # R. J. Mathar, Oct 01 2016
  • Mathematica
    a[n_, k_] := If[n == 1 && k == 1, 1, Sum[(-3)^m Abs[StirlingS1[n + 2, n + 2 - k + m]], {m, 0, k}]];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2023, after R. J. Mathar *)

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<3, and a_k(1,2,4,5,...,n+1) if n>=3, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n=3, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).

A196845 Table of elementary symmetric function a_k(3,4,...,n+2) (no 1 and 2).

Original entry on oeis.org

1, 1, 3, 1, 7, 12, 1, 12, 47, 60, 1, 18, 119, 342, 360, 1, 25, 245, 1175, 2754, 2520, 1, 33, 445, 3135, 12154, 24552, 20160, 1, 42, 742, 7140, 40369, 133938, 241128, 181440, 1, 52, 1162, 14560, 111769, 537628, 1580508, 2592720, 1814400, 1, 63, 1734, 27342, 271929, 1767087, 7494416, 19978308, 30334320, 19958400
Offset: 0

Author

Wolfdieter Lang, Oct 26 2011

Keywords

Comments

For the symmetric functions a_k see a comment in A196841.
In general the triangle S_{i,j}(n,k), n>=k>=0, 1<=i=i as a_k(1,2,...,i-1,i+1,...,j-1,j+1,...,n+2).
a_0():=1. The present triangle is S_{1,2}(n,k) (no 1 and 2 admitted).

Examples

			n\k  0   1    2     3     4       5       6       7  ...
0:   1
1:   1   3
2:   1   7   12
3:   1  12   47    60
4:   1  18  119   342   360
5:   1  25  245  1175  2754    2520
6:   1  33  445  3135 12154   24552   20160
7:   1  42  742  7140 40369  133938  241128  181440
...
a(3,2) = a_2(3,4,5) = 3*4+3*5+4*5 = 47.
a(3,2) = 1*(|s(6,4)| - (1*14 + 2*13)) + 2*(|s(6,6)| -(1*0+2*0)) = 85 - 40 + 2(1-0) = 47.
a(4,3) =  a_3(3,4,5,6) = 3*4*5+3*4*6+3*5*6+4*5*6 = 342.
a(4,3) = 1*(|s(7,4)| - (1*155 + 2*137)) + 2*(|s(7,6)| - (1*1 + 2*1)) = 735-429+2*(21-3) = 342.
		

Crossrefs

Cf. A196841, A048994, A145324, A001710 (diagonal), A001711 (1st subdiagonal), A001712 (2nd subdiagonal), A055998 (k=1), A024183 (k=2), A024184 (k=3), A024185 (k=4).

Formula

a(n,k) = 0 if n=0, k=0,...,n, with the elementary symmetric function a_k (see the comment above).
a(n,k) = sum(2^k*( |s(n+3,n+3-k+2*p)| -(S_1(n+1,k-1-2*p) +2*S_2(n+1,k-1-2*p))), p=0..floor(k/2)), with the Stirling numbers of the first kind s(n,m) = A048994(n,m), and the number triangles S_1(n,k)= A145324(n+1,k+1) and S_2(n,k) = A196841(n,k).

A001702 Generalized Stirling numbers.

Original entry on oeis.org

1, 24, 154, 580, 1665, 4025, 8624, 16884, 30810, 53130, 87450, 138424, 211939, 315315, 457520, 649400, 903924, 1236444, 1664970, 2210460, 2897125, 3752749, 4809024, 6101900, 7671950, 9564750, 11831274, 14528304, 17718855, 21472615, 25866400, 30984624
Offset: 1

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For n > 1, a(n) = A145324(n+2,4).

Programs

  • GAP
    Concatenation([1],List([2..35],n->(n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48)); # Muniru A Asiru, Sep 29 2018
    
  • Magma
    [1] cat [n*(n^2-1)*(n+4)*(n^2+7*n+14)/48: n in [2..35]]; // Vincenzo Librandi, Sep 30 2018
    
  • Maple
    A001702 := proc(n)
        if n = 1 then
            1 ;
        else
            (n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48 ;
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Join[{1}, Table[(n-1) n (n+1) (n+4) (n^2 + 7 n + 14)/48, {n, 2, 100}]] (* T. D. Noe, Aug 09 2012 *)
    CoefficientList[Series[1 +x*(x-4)*(x^2-2*x+6)/(x-1)^7, {x, 0, 100}], x] (* Stefano Spezia, Sep 30 2018 *)
    Join[{1},Table[Coefficient[Product[x + j, {j, 2, k}], x, k - 4], {k, 4, 40}]]  (* or *)  Join[{1}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {24, 154, 580, 1665, 4025, 8624, 16884}, 40]] (* Robert A. Russell, Oct 04 2018 *)
  • PARI
    vector(50, n, if(n==1, 1, (1/48)*(n-1)*n* (n+1)* (n+4)*(n^2 +7*n +14))) \\G. C. Greubel, Oct 06 2018

Formula

a(n) = (1/48)*(n-1)*n*(n+1)*(n+4)*(n^2+7n+14), n > 1.
G.f.: x + x^2*(x-4)*(x^2-2*x+6)/(x-1)^7. - Simon Plouffe in his 1992 dissertation
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-1) = -f(n,n-3,2), for n >= 3. - Milan Janjic, Dec 20 2008
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Colin Barker, Jul 08 2020

A196843 Table of the elementary symmetric functions a_k(1,2,3,5,6...n+1) (missing 4).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 11, 41, 61, 30, 1, 17, 107, 307, 396, 180, 1, 24, 226, 1056, 2545, 2952, 1260, 1, 32, 418, 2864, 10993, 23312, 24876, 10080, 1, 41, 706, 6626, 36769, 122249, 234684, 233964, 90720, 1, 51, 1116, 13686, 103029, 489939, 1457174
Offset: 0

Author

Wolfdieter Lang, Oct 25 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[j]=j for j=1,2,3 and x[j]=j+1 for j=4,...,n. This is the triangle S_4(n,k), n>=0, k=0..n. The first four rows coincide with those of triangle A094638.

Examples

			n\k  0   1    2    3     4      5     6      7   ...
0:   1
1:   1   1
2:   1   3    2
3:   1   6   11    6
4:   1  11   41   61    30
5:   1  17  107  307   396    180
6:   1  24  226 1056  2545   2952   1260
7:   1  32  418 2864 10993  23312  24876  10080
...
a(3,0) = a_0(1,2,3):= 1, a(3,1) = a_1(1,2,3)= 6.
a(4,2) = a_2(1,2,3,5) = 1*2+1*3+1*5+2*3+2*5+3*5 = 41.
a(4,2) = 1*|s(6,4)| - 4*|s(6,5)| + 16*|s(6,6)| =
  1*85 -4*15+16*1 = 41.
		

Crossrefs

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<4, and a_k(1,2,3,5,...,n+1) if n>=4, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n
a(n,k)= sum((-4)^m*|s(n+2,n+2-k+m)|,m=0..k) if n>=4
with the Stirling numbers of the first kind s(n,m)=
A048994(n,m).

A196844 Table of the elementary symmetric functions a_k(1,2,3,4,6,...,n+1) (5 missing).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 16, 95, 260, 324, 144, 1, 23, 207, 925, 2144, 2412, 1008, 1, 31, 391, 2581, 9544, 19564, 20304, 8064, 1, 40, 670, 6100, 32773, 105460, 196380, 190800, 72576, 1, 50, 1070, 12800, 93773, 433190, 1250980
Offset: 0

Author

Wolfdieter Lang, Oct 25 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x(j) = j for j = 1, 2, 3, 4 and x(j) = j + 1 for j = 5, ..., n. This is the triangle S_5(n,k), n >= 0, k = 0..n. The first five rows coincide with those of triangle A094638.

Examples

			n\k 0   1    2     3     4      5      6     7 ...
0:  1
1:  1   1
2:  1   3    2
3:  1   6   11     6
4:  1  10   35    50    24
5:  1  16   95   260   324    144
6:  1  23  207   925  2144   2412   1008
7:  1  31  391  2581  9544  19564  20304  8064
...
a(4,0) = a_0(1, 2, 3, 4) := 1, a(4,1) = a_1(1, 2, 3, 4) = 10.
a(5,2) = a_2(1, 2, 3, 4, 6) = 1*2 + 1*3 + 1*4 + 1*6 + 2*3 + 2*4 + 2*6 + 3*4 + 3*6 + 4*6 = 95.
a(5,2) = 1*|s(7,5)| - 5*|s(7,6)| + 25*|s(7,7)| = 1*175 - 5*21 + 25*1 = 95.
		

Crossrefs

Formula

a(n,k) = a_k(1, 2, ..., n) if 0 <= n < 5, and a_k(1, 2, 3, 4, 6, 7, ..., n+1) if n >= 5, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n < k, a(n,k) = |s(n+1, n+1-k)| if 0 <= n < 5, and
a(n,k) = sum((-5)^m*|s(n+2, n+2-k+m)|, m = 0..k) if n >= 5, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).
Showing 1-10 of 10 results.