A051170 T(n,5), array T as in A051168; a count of Lyndon words; aperiodic necklaces with 5 black beads and n-5 white beads.
0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682
Offset: 5
Links
- G. C. Greubel, Table of n, a(n) for n = 5..5000
- Index entries for sequences related to Lyndon words
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,1,-4,6,-4,1).
Programs
-
Magma
[ Floor(Binomial(n,5)/n): n in [5..30]]; // G. C. Greubel, Nov 26 2017
-
Mathematica
Table[Floor[Binomial[n, 5]/n], {n, 5, 50}] (* G. C. Greubel, Nov 26 2017 *)
-
PARI
for(n=5,30, print1(floor(binomial(n,5)/n), ", ")) \\ G. C. Greubel, Nov 26 2017
Formula
G.f.: -x^6*(x^2-x+1) / ((x-1)^5*(x^4+x^3+x^2+x+1)). - Colin Barker, Jun 05 2013
a(n) = floor(C(n,5)/n). - Alois P. Heinz, Jun 05 2013
G.f.: x^5/5 * (1/(1-x)^5 - 1/(1-x^5)). - Herbert Kociemba, Oct 16 2016