cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277166 Numbers m such that m divides the number of divisors of m!!.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 24, 27, 32, 36, 40, 48, 54, 56, 60, 63, 64, 72, 80, 84, 90, 96, 104, 105, 108, 112, 120, 128, 132, 135, 140, 144, 147, 152, 156, 160, 164, 165, 168, 180, 189, 192, 195, 200, 204, 210, 216, 220, 224, 225, 228, 231, 240, 243, 250, 252, 256
Offset: 1

Views

Author

Michel Lagneau, Oct 01 2016

Keywords

Comments

It seems that a(n) is asymptotic to c*n with c = 4.8...

Examples

			8 is in the sequence because the number of divisor of 8!! is A114338(8) = 16, which is divisible by 8.
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Divisible[ DivisorSigma[0, n!!], n]; Select[ Range[200], ok]
  • PARI
    isok(n) = (numdiv(prod(i=0, (n-1)\2, n - 2*i)) % n) == 0; \\ after first Pari in A006882; Michel Marcus, Oct 02 2016

Formula

A114338(a(n)) mod a(n) = 0.

A275250 Odd numbers n that divide the number of divisors of n!.

Original entry on oeis.org

1, 27, 45, 105, 125, 135, 175, 189, 225, 231, 243, 297, 315, 351, 375, 385, 405, 441, 455, 495, 525, 539, 567, 585, 595, 605, 625, 637, 663, 675, 693, 715, 729, 735, 741, 765, 819, 825, 845, 847, 855, 875, 891, 935, 945, 969, 975, 1001, 1029, 1035, 1045, 1053, 1089
Offset: 1

Views

Author

Altug Alkan, Jul 21 2016

Keywords

Comments

Odd terms of A051178.

Examples

			The odd number 27 is a term because A000005(27!) = 2^9*3^3*7^2 is divisible by 27.
		

Crossrefs

Programs

  • Maple
    N:= 2000: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..N,2)]):
    d:= Vector(nops(P),1):
    A:= 1:
    for n from 2 to N do
      f:= ifactors(n)[2];
      for t in f do
        if member(t[1],P,'k') then
            d[k]:= d[k] + t[2]
        fi
      od:
      if n::odd and convert(d,`*`) mod n = 0 then A:= A, n fi;
    od:
    A; # Robert Israel, Aug 05 2016
  • Mathematica
    A275250Q = OddQ[#] && Divisible[DivisorSigma[0, #!], #] &; Select[Range[500], A275250Q] (* JungHwan Min, Jul 29 2016 *)
  • PARI
    isok(n) = (n % 2) && !(numdiv(n!) % n); \\ Michel Marcus, Jul 26 2016
Showing 1-2 of 2 results.