A200523 Least m>0 such that n = 3^x-y^2 (mod m) has no solution, or 0 if no such m exists.
0, 0, 0, 0, 8, 0, 8, 9, 0, 0, 12, 0, 8, 9, 8, 20, 9, 0, 0, 12, 8, 80, 8, 0, 45, 9, 0, 0, 8, 80, 8, 9, 0, 45, 9, 20, 8, 21, 8, 80, 9, 80, 28, 9, 8, 0, 8, 0, 91, 9, 20, 36, 8, 0, 8, 12, 0, 80, 9, 80, 8, 9, 8, 28, 15, 0, 91, 9, 8, 45, 8, 0, 0, 15, 0, 20, 8, 0
Offset: 0
Keywords
Examples
See A200507 for developed examples. Some of the larger values include a(107)=17732, a(146)=1924, a(347)=4400, a(416)=2044, a(458)>30000.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..457
Programs
-
PARI
A200523(n,b=3,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,y,y^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<
bx & break; next(3))); return(m))}
Comments