cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051217 Nonnegative numbers of the form 6^x - y^2.

Original entry on oeis.org

0, 1, 2, 5, 6, 11, 20, 27, 32, 35, 36, 47, 71, 72, 95, 116, 135, 140, 152, 167, 180, 191, 200, 207, 212, 215, 216, 272, 335, 380, 396, 431, 455, 512, 551, 567, 620, 671, 720, 767, 812, 855, 860, 887, 896, 935, 972, 1007, 1040, 1052, 1071, 1100, 1127, 1152
Offset: 1

Views

Author

Keywords

Comments

No integers congruent to {3,4,8,9} mod 10. - Zak Seidov, Nov 14 2011
If k is not in this sequence, then A200440 gives the least modulus which proves that there cannot be a solution to k = 6^x - y^2. - M. F. Hasler, Nov 18 2011

Crossrefs

Cf. A201122.

Programs

  • Mathematica
    max = 10^5; Clear[f]; f[m_] := f[m] = Select[Table[6^x - y^2, {x, 0, m}, {y, 0, Ceiling[6^(x/2)]}] // Flatten // Union, 0 <= # <= max &]; f[1]; f[m = 2]; While[f[m] != f[m - 1], m++]; Print["m = ", m]; A051217 = f[m] (* Jean-François Alcover, May 13 2017 *)
  • PARI
    is_A051217(n) = !A200440(n)  \\ M. F. Hasler, Nov 18 2011