cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A200506 Least m>0 such that n = 6^x-y^2 (mod m) has no solution, or 0 if no such m exists.

Original entry on oeis.org

0, 0, 0, 5, 5, 0, 0, 9, 5, 5, 7, 0, 63, 5, 5, 36, 9, 7, 5, 5, 0, 44, 9, 5, 5, 9, 16, 0, 5, 5, 16, 7, 0, 5, 5, 0, 0, 21, 5, 5, 9, 16, 16, 5, 5, 7, 12, 0, 5, 5, 28, 36, 7, 5, 5, 12, 192, 16, 5, 5, 37, 9, 16, 5, 5, 24, 7, 9, 5, 5, 9, 0, 0, 5, 5, 36, 9, 52, 5, 5
Offset: 0

Views

Author

M. F. Hasler, Nov 18 2011

Keywords

Comments

If such an m>0 exists, this proves that n is not in A051217, i.e., not of the form 6^x-y^2. On the other hand, if there are integers x, y such that n=6^x-y^2, then we know that a(n)=0.

Examples

			See A200507.
		

Crossrefs

Programs

  • PARI
    A200506(n,b=6,p=3)={ my( x=0, qr, bx, seen ); for( m=2,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<bx & break; next(3))); return(m))}

Formula

a(3+5k)=a(4+5k)=5, a(10+35k)=a(17+35k)=a(31+35k)=7 for all k>=0.
a(n)=9 for n=7, 16, 22, 70, 76 and 85 (mod 90).

A201122 Differences between odd powers of 6 and the next smaller square.

Original entry on oeis.org

2, 20, 32, 95, 3420, 8847, 89927, 494576, 1347932, 48525552, 265807127, 682379927, 3237653360, 52571448911, 356954431580, 1333226567615, 6534477744687, 69394484050880, 10500704463815, 378025360697340, 13608912985104240, 60046182811381232, 227226500274052935, 442409686123219952, 15926748700435918272
Offset: 1

Views

Author

Hugo Pfoertner, Nov 27 2011

Keywords

Examples

			a(1)=6^1-2^2=2, a(2)=6^3-14^2=216-196=20, a(3)=6^5-88^2=7776-7744=32
		

Crossrefs

Programs

  • Mathematica
    #-Floor[Sqrt[#]]^2&/@(6^Range[1,51,2]) (* Harvey P. Dale, Aug 12 2012 *)

Formula

a(n)=6^(2*n-1) - floor(sqrt(6^(2*n-1)))^2

A134989 Numbers expressible in more than one way as 6^x-y^2.

Original entry on oeis.org

0, 20, 32, 95, 207, 720, 1152, 1215, 1287, 3420, 3807, 6255, 6407, 7452, 7767, 18095, 23247, 25920, 41472, 43740, 46332, 46647, 69255, 123120, 137052, 174087, 211815, 217935, 225180, 230652, 268272, 279612, 279927, 651420, 836892, 933120, 1416447
Offset: 1

Views

Author

Zak Seidov, Feb 05 2008

Keywords

Comments

Numbers n such that equation 6^x-y^2=n has more than one solution.

Examples

			0=6^(2k)-(6^k)^2, k=1,2,..
20=6^2-4^2=6^3-14^2,
32=6^2-2^2=6^5-88^2,
95=6^3-11^2=6^7-529^2,
207=6^3-3^2=6^4-33^2=6^5-87^2,
720=6^4-24^2=6^5-84^2,
1152=6^4-12^2=6^7-528^2,
1215=6^4-9^2=6^5-81^2,
1287=6^4-3^2=6^6-213^2.
		

Crossrefs

Cf. A051217.

Programs

  • Mathematica
    lst = {}; Do[ t = 6^x - y^2; If[t < 10^7/7, AppendTo[lst, t]], {x, 185}, {y, (a = Floor@Sqrt[6^x - 10^7]; If[Element[a, Reals], a, 0]), Floor@Sqrt[6^x]}]; lst = Sort@lst; lsu = {}; Do[ If[lst[[n]] == lst[[n + 1]], AppendTo[lsu, lst[[n]]]], {n, -1 + Length@lst}]; Union@lsu (* Robert G. Wilson v, Feb 09 2008 *)

Extensions

More terms from Robert G. Wilson v, Feb 09 2008

A135476 Positive numbers of the form 6^x-y^2 with repetition.

Original entry on oeis.org

1, 2, 5, 6, 11, 20, 20, 27, 32, 32, 35, 36, 47, 71, 72, 95, 116, 135, 140, 152, 167, 180, 191, 200, 207, 207, 207, 212, 215, 216, 272, 335, 380, 396, 455, 512, 551, 567, 620, 671, 720, 720, 767, 812, 855, 887, 896, 935, 972, 1007, 1040, 1052, 1071, 1100, 1127
Offset: 1

Views

Author

Zak Seidov, Feb 06 2008

Keywords

Crossrefs

Showing 1-4 of 4 results.