A051226 Numbers m such that the Bernoulli number B_m has denominator 30.
4, 8, 68, 76, 124, 152, 188, 236, 244, 248, 284, 376, 404, 412, 428, 436, 472, 488, 548, 596, 604, 628, 668, 724, 788, 824, 844, 872, 892, 908, 916, 964, 1028, 1052, 1076, 1084, 1132, 1156, 1208, 1244, 1252, 1256, 1268, 1324, 1336, 1348, 1388
Offset: 1
Examples
The numbers m = 4, 8, 68 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Links
Programs
-
Mathematica
Select[Table[n, {n, 4, 1500, 2}], Denominator @ BernoulliB[#] == 30 &] [[1 ;; 47]] (* Jean-François Alcover, Apr 08 2011 *)
-
PARI
lista(nn) = for (n=1, nn, if (denominator(bernfrac(n)) == 30, print1(n, ", "))); \\ Michel Marcus, Mar 30 2015
-
Perl
@p=(2,3,5); $p=5; for($n=4; $n<=1388; $n+=4){while($p<$n+1){$p+=2; next if grep$p%$==0,@p; push@p,$p; push@c,$p-1; }print"$n,"if!grep$n%$==0,@c; }print"\n"
Formula
a(n) = 2*A051225(n). - Petros Hadjicostas, Jun 06 2020
Extensions
More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020
Comments