A051227 Numbers m such that the Bernoulli number B_{2*m} has denominator 42.
3, 57, 93, 129, 177, 201, 213, 237, 291, 327, 381, 417, 447, 471, 489, 501, 579, 591, 597, 633, 669, 681, 687, 807, 921, 951, 1011, 1047, 1059, 1083, 1137, 1149, 1167, 1203, 1227, 1263, 1299, 1317, 1347, 1371, 1389, 1437, 1461, 1497, 1563, 1569
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Links
Programs
-
Mathematica
Select[Range[1600],Denominator[BernoulliB[2#]]==42&] (* Harvey P. Dale, Nov 24 2011 *)
-
PARI
is(n)=denominator(bernfrac(2*n))==42 \\ Charles R Greathouse IV, Feb 07 2017
-
Perl
@p=(2,3,5,7); @c=(4); $p=7; for($n=6; $n<=3126; $n+=6){while($p<$n+1){$p+=2; next if grep$p%$==0,@p; push@p,$p; push@c,$p-1; }print$n/2,","if!grep$n%$==0,@c; }print"\n"
Formula
a(n) = A051228(n)/2. - Petros Hadjicostas, Jun 06 2020
Extensions
More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020
Comments