cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051230 Numbers m such that the Bernoulli number B_m has denominator 66.

Original entry on oeis.org

10, 50, 170, 370, 470, 590, 610, 670, 710, 730, 790, 850, 1010, 1070, 1270, 1370, 1390, 1490, 1630, 1670, 1850, 1970, 1990, 2230, 2270, 2290, 2570, 2630, 2690, 2770, 2830, 2890, 2950, 3050, 3070, 3110, 3130, 3170, 3310, 3350, 3470, 3530
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

  • Mathematica
    denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *)
    Flatten[Position[BernoulliB[Range[4000]],?(Denominator[#]==66&)]] (* _Harvey P. Dale, Nov 17 2014 *)
  • PARI
    /* define indicator function */ a(n)=local(s); s=0; fordiv(n,d,s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45,n,0); m=0; forstep(n=10,4000,10, if(a(n),an[ m++ ]=n)); for(n=1,42,print1(an[ n ]","))

Extensions

More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020