A051230 Numbers m such that the Bernoulli number B_m has denominator 66.
10, 50, 170, 370, 470, 590, 610, 670, 710, 730, 790, 850, 1010, 1070, 1270, 1370, 1390, 1490, 1630, 1670, 1850, 1970, 1990, 2230, 2270, 2290, 2570, 2630, 2690, 2770, 2830, 2890, 2950, 3050, 3070, 3110, 3130, 3170, 3310, 3350, 3470, 3530
Offset: 1
Examples
The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
Links
Programs
-
Mathematica
denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *) Flatten[Position[BernoulliB[Range[4000]],?(Denominator[#]==66&)]] (* _Harvey P. Dale, Nov 17 2014 *)
-
PARI
/* define indicator function */ a(n)=local(s); s=0; fordiv(n,d,s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45,n,0); m=0; forstep(n=10,4000,10, if(a(n),an[ m++ ]=n)); for(n=1,42,print1(an[ n ]","))
Extensions
More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020
Comments