cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088576 Position of the first location of n in the decimal expansion of e.

Original entry on oeis.org

14, 3, 1, 18, 11, 12, 21, 2, 4, 13, 196, 201, 371, 28, 224, 202, 95, 89, 3, 109, 112, 88, 253, 17, 34, 93, 31, 1, 5, 132, 72, 190, 111, 143, 144, 18, 20, 271, 86, 107, 67, 125, 98, 135, 240, 11, 104, 26, 229, 35, 236, 94, 16, 19, 77, 302, 154, 39, 326, 12, 21, 243, 33
Offset: 0

Views

Author

Cino Hilliard, Nov 19 2003

Keywords

Comments

Except for a(0), the same as A051238.

Examples

			The first 7 is in the 2nd position of the digits of e, so a(7) = 2.
		

Crossrefs

Cf. A001113 (decimal expansion of e).
Cf. A036900 (number of digits in the decimal expansion of e that must scanned to get all n-digit strings).
Cf. A032445 (positions in pi), A088577 (positions in phi).

Programs

  • Mathematica
    Module[{nn=400,ed},ed=RealDigits[E,10,nn][[1]];Table[SequencePosition[ed,IntegerDigits[n],1][[1,1]],{n,0,70}]] (* Harvey P. Dale, Mar 30 2025 *)
  • PARI
    trajedigitsd(n,m) = { default(realprecision,6000); p = exp(1)*10^5000; v = Vec(Str(p)); for(d=0,m, for(x=1,n, if(d<10, y = eval(v[x]), if(d<100, y = eval(v[x])*10 + eval(v[x+1]), if(d<1000, y = eval(v[x])*100 + eval(v[x+1])*10 + eval(v[x+2]), y = eval(v[x])*1000 + eval(v[x+1])*100 + eval(v[x+2])*10 + eval(v[x+3]) ); ); ); if(y == d,print1(x",");break); ); ) }

A088577 Position of the first location of n in the digits of phi = 1.61803398874989....

Original entry on oeis.org

5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, 35, 122, 56, 255, 367, 1, 36, 3, 189, 20, 55, 63, 132, 79, 214, 68, 64, 52, 175, 41, 138, 182, 6, 27, 57, 29, 99, 33, 7, 106, 91, 348, 28, 59, 22, 71, 103, 16, 12, 215, 395, 67, 112, 58, 769, 31, 49, 23, 167, 69, 2, 51, 32, 300, 30, 124
Offset: 0

Views

Author

Cino Hilliard, Nov 19 2003

Keywords

Examples

			The first 0 is in the 5th position of the digits of Phi, so 5 is the first entry in the sequence.
		

Crossrefs

Cf. A001622 (decimal expansion of phi).
Cf. A032445 (positions in Pi), A051238 (positions in e).

Programs

  • Mathematica
    With[{phistr = StringDrop[ToString[N[GoldenRatio, 1000]], {2, 2}]}, Table[ StringPosition[phistr, ToString[n], 1][[1, 1]], {n, 0, 70}]] (* Harvey P. Dale, Sep 17 2011 *)
  • PARI
    trajphidigitsd(n,m) = { default(realprecision,6000); p = (sqrt(5)+1)/2*10^5000; v = Vec(Str(p)); for(d=0,m, for(x=1,n, if(d<10, y = eval(v[x]), if(d<100, y = eval(v[x])*10 + eval(v[x+1]), if(d<1000, y = eval(v[x])*100 + eval(v[x+1])*10 + eval(v[x+2]), y = eval(v[x])*1000 + eval(v[x+1])*100 + eval(v[x+2])*10 + eval(v[x+3]) ); ); ); if(y == d,print1(x",");break); ); ) }

A281092 Position of the first occurrence of n in the decimal expansion of e.

Original entry on oeis.org

13, 2, 0, 17, 10, 11, 20, 1, 3, 12, 195, 200, 370, 27, 223, 201, 94, 88, 2, 108, 111, 87, 252, 16, 33, 92, 30, 0, 4, 131, 71, 189, 110, 142, 143, 17, 19, 270, 85, 106, 66, 124, 97, 134, 239, 10, 103, 25, 228, 34, 235, 93, 15, 18, 76, 301, 153, 38, 325, 11, 20, 242, 32
Offset: 0

Views

Author

Bobby Jacobs, Jan 21 2017

Keywords

Comments

The 2 before the decimal point is counted as position 0.
This differs from A078197(n) at n = 2, 27, 271, 2718, ... .

Crossrefs

Programs

  • Mathematica
    With[{ed=RealDigits[E,10,500][[1]]},Flatten[Table[SequencePosition[ ed, IntegerDigits[n],1][[All,1]],{n,0,65}]]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 06 2017 *)
Showing 1-3 of 3 results.