cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051256 Numbers formed from binomial coefficients (mod 2) interpreted as digits in factorial base.

Original entry on oeis.org

1, 3, 7, 33, 121, 843, 5167, 46233, 362881, 3991683, 40279687, 522910113, 6227383801, 93409304523, 1313941673647, 22324392524313, 355687428096001, 6758061133824003, 122000787836928007, 2561305169719296033
Offset: 0

Views

Author

Antti Karttunen, Oct 24 1999

Keywords

Examples

			a(5) = 1! + 2! + 5! + 6! = 843 (only the first, second, fifth and sixth terms are odd in row 5 of Pascal's Triangle).
		

Crossrefs

Programs

  • Maple
    A051256(n) := proc(n) local i; RETURN(add(((binomial(n,i) mod 2)*((i+1)!)),i=0..n)); end;
  • Mathematica
    Table[Sum[(k+1)!Mod[Binomial[n,k],2],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 14 2013 *)
  • Python
    from math import factorial
    def A051256(n):
        return sum(0 if ~n & k else factorial(k+1) for k in range(n+1)) # Chai Wah Wu, Feb 08 2016

Formula

a(n) = Sum_{k=0..n} (k+1)!(C(n, k) mod 2).