A051256 Numbers formed from binomial coefficients (mod 2) interpreted as digits in factorial base.
1, 3, 7, 33, 121, 843, 5167, 46233, 362881, 3991683, 40279687, 522910113, 6227383801, 93409304523, 1313941673647, 22324392524313, 355687428096001, 6758061133824003, 122000787836928007, 2561305169719296033
Offset: 0
Examples
a(5) = 1! + 2! + 5! + 6! = 843 (only the first, second, fifth and sixth terms are odd in row 5 of Pascal's Triangle).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..448
Programs
-
Maple
A051256(n) := proc(n) local i; RETURN(add(((binomial(n,i) mod 2)*((i+1)!)),i=0..n)); end;
-
Mathematica
Table[Sum[(k+1)!Mod[Binomial[n,k],2],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 14 2013 *)
-
Python
from math import factorial def A051256(n): return sum(0 if ~n & k else factorial(k+1) for k in range(n+1)) # Chai Wah Wu, Feb 08 2016
Formula
a(n) = Sum_{k=0..n} (k+1)!(C(n, k) mod 2).