cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051263 Expansion of 1/((1-x)*(1-x^3)^2*(1-x^5)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 7, 7, 9, 13, 14, 17, 22, 24, 28, 35, 38, 43, 52, 56, 63, 74, 79, 88, 101, 108, 119, 134, 143, 156, 174, 185, 200, 221, 234, 252, 276, 291, 312, 339, 357, 381, 411, 432, 459, 493, 517, 547, 585, 612, 646, 688, 718, 756, 802, 836, 878, 928, 966
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003

Crossrefs

Programs

  • PARI
    {a(n) = if( n<-11, -a(-12 - n), if( n<0, 0, polcoeff( 1 / ((1 - x) * (1 - x^3)^2 * (1 - x^5)) + x * O(x^n),n)))} /* Michael Somos, Mar 21 2003 */

Formula

G.f.: 1 / ((1 - x) * (1 - x^3)^2 * (1 - x^5)).
a(-12 - n) = -a(n). a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) + a(n-5) - 2*a(n-6) + a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-11) - a(n-12). - Michael Somos, Mar 21 2003
A029153(n) = a(floor(n/2) - mod(n,2)) = a(A028242(n - 2)). - Michael Somos, Mar 21 2003
a(n) = 1 + [(n mod 15)=6] + floor((n^3+18*n^2+(87+30*[(n mod 3)=0])*n)/270) where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 06 2025