A051270 Numbers that are divisible by exactly 5 different primes.
2310, 2730, 3570, 3990, 4290, 4620, 4830, 5460, 5610, 6006, 6090, 6270, 6510, 6630, 6930, 7140, 7410, 7590, 7770, 7854, 7980, 8190, 8580, 8610, 8778, 8970, 9030, 9240, 9282, 9570, 9660, 9690, 9870, 10010, 10230, 10374, 10626, 10710, 10920, 11130, 11220, 11310
Offset: 1
Keywords
Examples
2730 = 2*3*5*7*13 is the first nontrivial 5-prime factor number following the 5th primorial, 2310 = 2*3*5*7*11.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
Programs
-
Maple
A051270 := proc(n) option remember; local a; if n = 1 then 2*3*5*7*11 ; else for a from procname(n-1)+1 do if A001221(a)= 5 then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 13 2019
-
Mathematica
Select[Range[12000],PrimeNu[#]==5&] (* Harvey P. Dale, Feb 13 2012 *)
-
PARI
is(n)=omega(n)==5 \\ Charles R Greathouse IV, Apr 29 2015
-
PARI
A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) list(lim,pr=5)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
-
Python
from sympy import primefactors print([n for n in range(2, 20001) if len(primefactors(n))==5]) # Indranil Ghosh, Apr 06 2017