cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A068316 Run lengths of the Moebius function applied to A051270 (numbers with 5 distinct prime factors).

Original entry on oeis.org

5, 1, 1, 1, 6, 2, 4, 3, 4, 1, 2, 1, 6, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 1, 1, 1, 1, 4, 1, 2, 2, 3, 1, 2, 5, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Jani Melik, Feb 26 2002

Keywords

Examples

			If we consider A051270 and apply the Moebius function mu(n) to it we get a sequence of values: (-1,-1,-1,-1,-1),0,(-1),0,(-1,-1,-1,-1,-1,-1),0,0,(-1,-1,-1,-1),0,0,0,(-1,-1,-1,-1),0,(-1,-1),0,(-1, ... If we then look at the lengths of runs of equal terms, we get the sequence.
If we consider the values of A051270 which are not in A046387 we get numbers which are not squarefree, so mu(A051270(.)) is zero: 4620, 5460, 6930, ...
		

Crossrefs

Programs

  • Maple
    runl := 1 :
    for n from 2 to 1000 do
        if numtheory[mobius](A051270(n)) = numtheory[mobius](A051270(n-1)) then
            runl := runl+1 ;
        else
            printf("%d,",runl) ;
            runl := 1;
        end if;
    end do: # R. J. Mathar, Oct 13 2019

Extensions

Corrected and extended by R. J. Mathar, Oct 13 2019

A364435 The first term in a run of at least 4 consecutive numbers each with exactly 5 distinct prime factors (i.e. belong to A051270).

Original entry on oeis.org

21871365, 37055184, 37227993, 39272583, 41205603, 43067463, 44012682, 44126949, 47761635, 48806274, 49362234, 49613484, 50582103, 52953795, 54244068, 60529077, 60988653, 61042069, 62319465, 63850344, 66068793, 66709683, 66710004, 67874079, 67974312, 68294148, 68529900
Offset: 1

Views

Author

David A. Corneth, Jul 24 2023

Keywords

Examples

			21871365 is in the sequence as it starts a run of at least 4 consecutive numbers each with exactly 5 distinct prime factors.
That is each of 21871365 = 3 * 5 * 29 * 137 * 367, 21871365 + 1 = 21871366 = 2 * 11 * 37 * 97 * 277, 21871365 + 2 = 21871367 = 7*17*23*61*131, 21871365 + 3 = 21871368 = 2^3 * 3^2 * 31 * 41 * 239 have 5 distinct prime factors.
		

Crossrefs

Programs

  • PARI
    upto(n) = {my(res = List(), streak = 0); n+=3; forfactored(i = 1, n, if(omega(i[2]) == 5, streak++; if(streak >= 4, listput(res, i[1]-3)), streak = 0)); res}

A030059 Numbers that are the product of an odd number of distinct primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186, 190, 191, 193
Offset: 1

Views

Author

Keywords

Comments

From Enrique Pérez Herrero, Jul 06 2012: (Start)
This sequence and A030229 partition the squarefree numbers: A005117.
Also solutions to the equation mu(n) = -1.
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 - zeta(2*s))/(2*zeta(s)*zeta(2*s)). (End) [See A088245 and the Hardy reference. - Wolfdieter Lang, Oct 18 2016]
The lexicographically least sequence of integers > 1 such that for each entry, the number of proper divisors occurring in the sequence is equal to 0 modulo 3. - Masahiko Shin, Feb 12 2018
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, May 22 2020
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = -n, where sigma(n) is the sum of divisors function (A000203). - Robert D. Rosales, May 20 2024

References

  • B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publishing, 2002, pp. 64 - 65, (misprint on p. 65, line starting with Hence: it should be ... -1/Zeta(s) not ... -Zeta(s)).
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv, 21.

Crossrefs

Programs

  • Maple
    a := n -> `if`(numtheory[mobius](n)=-1,n,NULL); seq(a(i),i=1..193); # Peter Luschny, May 04 2009
    # alternative
    A030059 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if numtheory[mobius](a) = -1 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 22 2020
  • Mathematica
    Select[Range[300], MoebiusMu[#] == -1 &] (* Enrique Pérez Herrero, Jul 06 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • PARI
    is(n)=moebius(n)==-1 \\ Charles R Greathouse IV, Jan 31 2017
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A030059(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length(),2)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

omega(a(n)) = A001221(a(n)) gives A005408. {primes A000040} UNION {sphenic numbers A007304} UNION {numbers that are divisible by exactly 5 different primes A051270} UNION {products of 7 distinct primes (squarefree 7-almost primes) A123321} UNION {products of 9 distinct primes; also n has exactly 9 distinct prime factors and n is squarefree A115343} UNION.... - Jonathan Vos Post, Oct 19 2007
a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - Charles R Greathouse IV, Sep 07 2017

Extensions

More terms from David W. Wilson

A046387 Products of exactly 5 distinct primes.

Original entry on oeis.org

2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 7854, 8610, 8778, 8970, 9030, 9282, 9570, 9690, 9870, 10010, 10230, 10374, 10626, 11130, 11310, 11730, 12090, 12210, 12390, 12558, 12810, 13090, 13110
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Subsequence of A051270. 4620 = 2^2*3*5*7*11 is in A051270 but not in here, for example. - R. J. Mathar, Nov 10 2014

Examples

			a(1) = 2310 = 2 * 3 * 5 * 7 * 11 = A002110(5) = 5#.
a(2) = 2730 = 2 * 3 * 5 * 7 * 13.
a(3) = 3570 = 2 * 3 * 5 * 7 * 17.
a(10) = 6006 = 2 * 3 * 7 * 11 * 13.
		

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.

Programs

  • Maple
    A046387 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2*3*5*7*11 ;
        else
            for a from procname(n-1)+1 do
                if A001221(a)= 5 and issqrfree(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Oct 13 2019
  • Mathematica
    f5Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}; lst={};Do[If[f5Q[n], AppendTo[lst, n]], {n, 8!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
  • PARI
    is(n)=factor(n)[,2]==[1,1,1,1,1]~ \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)= omega(n)==5 && bigomega(n)==5 \\ Hugo Pfoertner, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046387(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,5)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 30 2024

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A000977 Numbers that are divisible by at least three different primes.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
Offset: 1

Views

Author

Keywords

Comments

a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - Benoit Cloitre, Aug 27 2002
The first differences are bounded: clearly a(n+1) - a(n) <= 30. - Charles R Greathouse IV, Dec 19 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A070915.

Programs

  • Haskell
    a000977 n = a000977_list !! (n-1)
    a000977_list = filter ((> 2) . a001221) [1..]
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    A000977 := proc(n)
    if (nops(numtheory[factorset](n)) >= 3) then
       RETURN(n)
    fi: end:  seq(A000977(n), n=1..500); # Jani Melik, Feb 24 2011
  • Mathematica
    DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
    Select[Range[300], PrimeNu[#] >= 3 &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    is(n)=omega(n)>2 \\ Charles R Greathouse IV, Dec 19 2011
    

Formula

a(n) = n + O(n log log n / log n). - Charles R Greathouse IV, Dec 19 2011 A001221(a(n)) > 2. - Reinhard Zumkeller, May 03 2013
A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - R. J. Mathar, Dec 05 2016

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002

A125666 Table read by ascending antidiagonals: n-th row of table consists of the positive integers divisible by exactly n distinct primes.

Original entry on oeis.org

2, 6, 3, 30, 10, 4, 210, 42, 12, 5, 2310, 330, 60, 14, 7, 30030, 2730, 390, 66, 15, 8, 510510, 39270, 3570, 420, 70, 18, 9, 9699690, 570570, 43890, 3990, 462, 78, 20, 11, 223092870, 11741730, 690690, 46410, 4290, 510, 84, 21, 13, 6469693230, 281291010
Offset: 1

Views

Author

Leroy Quet, Jan 29 2007

Keywords

Comments

Concatenated sequence is a permutation of the integers >= 2.
The chosen encoding of the table by *rising* antidiagonals is contrary to the OEIS standard which rather expects falling antidiagonals: as a consequence, displaying this sequence as a table (2nd link after the list of terms above) will list the integers with given number of prime divisors in columns rather than rows. - M. F. Hasler, Jun 06 2024

Examples

			The table begins:
  n\k|     1     2    3    4    5    6  ...
  ---+-------------------------------------
   1 |     2,    3,   4,   5,   7,   8, ...
   2 |     6,   10,  12,  14,  15, ...
   3 |    30,   42,  60,  66, ...
   4 |   210,  330, 390, ...
   5 |  2310, 2730, ...
   6 | 30030,  ...
  ...|   ...
		

Crossrefs

Cf. A001221, A002110 (col 1), A246655 (row 1), A007774 (row 2), A033992 (row 3), A033993 (row 4), A051270 (row 5), A074969 (row 6), A176655 (row 7), A348072 (row 8), A348073 (row 9), A073329 (diag), compare to A048692.

Programs

  • Mathematica
    f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
  • PARI
    A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024

Extensions

Extended by Ray Chandler, Feb 08 2007

A140079 Numbers n such that n and n+1 have 5 distinct prime factors.

Original entry on oeis.org

254540, 310155, 378014, 421134, 432795, 483405, 486590, 486794, 488565, 489345, 507129, 522444, 545258, 549185, 558789, 558830, 567644, 577940, 584154, 591260, 598689, 627095, 634809, 637329, 663585, 666995, 667029, 678755, 687939, 690234
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

For the smallest number r such that r and r+1 have n distinct prime factors, see A093548.
Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
Subsequence of the variant A321505 defined with "at least 5" instead of "exactly 5" distinct prime factors. See A321495 for the differences. - M. F. Hasler, Nov 12 2018
The subset of numbers where n and n+1 are also squarefree gives A318964. - R. J. Mathar, Jul 15 2023

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 5 && Length[FactorInteger[n + 1]] == 5, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    Transpose[SequencePosition[Table[If[PrimeNu[n]==5,1,0],{n,700000}],{1,1}]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Jul 25 2015 *)
  • PARI
    is(n)=omega(n)==5 && omega(n+1)==5 \\ Charles R Greathouse IV, Jun 02 2016

Formula

{k: k in A051270 and k+1 in A051270}. - R. J. Mathar, Jul 19 2023

A067003 Number of numbers <= n with same number of distinct prime factors as n.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 5, 6, 7, 2, 8, 3, 9, 4, 5, 10, 11, 6, 12, 7, 8, 9, 13, 10, 14, 11, 15, 12, 16, 1, 17, 18, 13, 14, 15, 16, 19, 17, 18, 19, 20, 2, 21, 20, 21, 22, 22, 23, 23, 24, 25, 26, 24, 27, 28, 29, 30, 31, 25, 3, 26, 32, 33, 27, 34, 4, 28, 35, 36, 5, 29, 37, 30, 38, 39, 40, 41
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(11)=8 since 2,3,4,5,7,8,9,11 each have one distinct prime factor. a(12)=3 since 6,10,12 each have two distinct prime factors.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of distinct prime factors as n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2  3  4     5  7  8  6   9   10  11  12  14  13  16  15  17  18
           2  3     4  5  7      8   6   9   10  12  11  13  14  16  15
              2     3  4  5      7       8   6   10  9   11  12  13  14
                    2  3  4      5       7       6   8   9   10  11  12
                       2  3      4       5           7   8   6   9   10
                          2      3       4           5   7       8   6
                                 2       3           4   5       7
                                         2           3   4       5
                                                     2   3       4
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeNu[#]==PrimeNu[n]&]],{n,100}] (* Gus Wiseman, Dec 28 2018 *)
  • PARI
    a(n) = my(nb = #factor(n)~); sum(k=1, n, #factor(k)~ == nb); \\ Michel Marcus, Jul 13 2019

Formula

a(A002110(n)) = 1.

A135956 Members of A050937 (nonprime Fibonacci numbers with prime index) with 5 or more distinct prime factors.

Original entry on oeis.org

322615043836854783580186309282650000354271239929, 1476475227036382503281437027911536541406625644706194668152438732346449273, 22334640661774067356412331900038009953045351020683823507202893507476314037053
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

Conjecture: all numbers in this sequence are product of 5 or more sum of two squares

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], c = Length[FactorInteger[Fibonacci[Prime[n]]]]; Print[n]; If[c > 4, Print[Fibonacci[Prime[n]]]; AppendTo[k, Fibonacci[Prime[n]]]]], {n, 1, 100}]; k

Formula

A050937 INTERSECT { A051270 UNION A074969 UNION ... } = A050937 MINUS {A135955 UNION A135954 UNION A135953}. - R. J. Mathar, Jun 09 2008

Extensions

Edited by R. J. Mathar, Jun 09 2008
Showing 1-10 of 25 results. Next