cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A140078 Numbers k such that k and k+1 have 4 distinct prime factors.

Original entry on oeis.org

7314, 8294, 8645, 9009, 10659, 11570, 11780, 11934, 13299, 13629, 13845, 14420, 15105, 15554, 16554, 16835, 17204, 17390, 17654, 17765, 18095, 18290, 18444, 18920, 19005, 19019, 19095, 19227, 20349, 20405, 20769, 21164, 21489, 21735
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
The subsequence of terms where k and k+1 are also squarefree is A318896. - R. J. Mathar, Jul 15 2023

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 161 (entry for 7314).

Crossrefs

Similar sequences with k distinct prime factors: A074851 (k=2), A140077 (k=3), this sequence (k=4), A140079 (k=5).
Cf. A093548.
Equals A321504 \ A321494.

Programs

Formula

{k: k in A033993 and k+1 in A033993}. - R. J. Mathar, Jul 19 2023

Extensions

Link provided by Harvey P. Dale, Jun 21 2013

A140077 Numbers n such that n and n+1 have 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Sep 14 2015
See A321503 for numbers n such that n & n+1 have at least 3 prime divisors, disjoint union of this and A321493, the terms of A321503 which are not in this sequence. A321493 has A140078 as a subsequence, which in turn is subsequence of A321504, and so on. Since n and n+1 can't share a prime factor, we have a(1) > sqrt(p(3+3)#) > A000196(A002110(3+3)). Note that A000196(A002110(3+4)) = A321493(1) exactly! - M. F. Hasler, Nov 13 2018

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 3 && Length[FactorInteger[n + 1]] == 3, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    SequencePosition[PrimeNu[Range[1250]],{3,3}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 27 2017 *)
  • PARI
    is(n)=omega(n)==3&&omega(n+1)==3 \\ Charles R Greathouse IV, Sep 14 2015

Formula

{k: k in A033992 and k+1 in A033992}. - R. J. Mathar, Jul 19 2023

A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors.

Original entry on oeis.org

14, 20, 21, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175, 176, 177, 183, 184
Offset: 1

Views

Author

Benoit Cloitre, Sep 10 2002

Keywords

Comments

Subsequence of A006049. - Michel Marcus, May 06 2016

Examples

			20=2^2*5 21=3*7 hence 20 is in the sequence.
		

Crossrefs

Analogous sequences for m distinct prime factors: this sequence (m=2), A140077 (m=3), A140078 (m=4), A140079 (m=5), A273879 (m=6).
Cf. A093548.
Equals A255346 \ A321502.

Programs

  • GAP
    Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # Muniru A Asiru, Dec 05 2018
    
  • Magma
    [n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // Vincenzo Librandi, Dec 05 2018
    
  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* Harvey P. Dale, Mar 12 2015 *)
  • PARI
    isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ Michel Marcus, May 06 2016
    
  • Python
    import sympy
    from sympy.ntheory.factor_ import primenu
    for n in range(1,200):
        if primenu(n)==2 and primenu(n+1)==2:
            print(n, end=', '); # Stefano Spezia, Dec 05 2018

Formula

a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13...
{k: A001221(k) = A001221(k+1) = 2}. - R. J. Mathar, Jul 18 2023

A364266 The first term in a chain of at least 3 consecutive numbers each with exactly 5 distinct prime factors.

Original entry on oeis.org

1042404, 3460280, 3818828, 3998664, 4638984, 4991964, 5540248, 5701254, 5715500, 5964958, 6772050, 6794084, 7237384, 7453964, 7459088, 7745318, 7757034, 7993194, 8083634, 8153430, 8168194, 8273628, 8340834, 8340980, 8414756, 8486994, 8698898, 8722634, 8758904
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Examples

			1042404 = 2^2*3*11*53*149, 1042405 = 5*6*143*29*79 and 1042406 = 2*17*23*31*43 each have 5 distinct prime factors, so 1042404 is in the sequence.
		

Crossrefs

Cf. A192203 (subsequence for squarefree triples). Subsequence of A140079 (2 consec.) and of A006073.
Cf. A364308 (3 dist. factors), A364309 (4 dist. factors), A364265 (6 dist. factors), A001221, A087978.

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 5 then
            if omega(k+1) = 5 then
                if omega(k+2) = 5 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • Mathematica
    seq[lim_] := Module[{s  = {}, q1 = False, q2 = False, q3}, Do[q3 = PrimeNu[k] == 5; If[q1 && q2 && q3, AppendTo[s, k-2]]; q1 = q2; q2 = q3, {k, 3, lim}]; s]; seq[10^7] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087978(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 5}. - R. J. Mathar, Jul 18 2023

A192203 Numbers k such that k, k+1, and k+2 are each the product of exactly 5 distinct primes.

Original entry on oeis.org

16467033, 18185869, 21134553, 21374353, 21871365, 22247553, 22412533, 22721585, 24845313, 25118093, 25228929, 25345333, 25596933, 26217245, 27140113, 29218629, 29752345, 30323733, 30563245, 31943065, 32663265, 33367893, 36055045, 38269021, 39738061, 40547065
Offset: 1

Views

Author

Gil Broussard, Jun 25 2011

Keywords

Comments

Numbers k such that k, k+1, and k+2 are all members of A046387. - N. J. A. Sloane, Jul 17 2024
A subsequence of A242608 intersect A016813. - M. F. Hasler, May 19 2014
All terms are congruent to 1 mod 4. - Zak Seidov, Dec 22 2014

Examples

			a(1)=16467033 because it is the product of 5 distinct primes (3,11,17,149,197), and so are a(1)+1: 16467034 (2,19,23,83,227), and a(1)+2: 16467035 (5,13,37,41,167).
		

Crossrefs

Cf. A046387, A140079. Subsequence of A318964 and of A364266.

Programs

  • Mathematica
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==5,1,0],{n,164*10^5,406*10^5}],{1,1,1}][[;;,1]]+164*10^5-1 (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    forstep(n=1+10^7,1e8,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==5||next(2));print1((n)", ")) \\ M. F. Hasler, May 19 2014

A321503 Numbers m such that m and m+1 both have at least 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 714, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2018

Keywords

Comments

Disjoint union of A140077 (omega({m, m+1}) = {3}) and A321493 (not both have exactly 3 prime divisors). The latter contains terms with indices {15, 60, 82, 98, 99, 104, ...} of this sequence.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(A002110(3+3)), A002110 = primorial.

Crossrefs

Subsequence of A000977.
Cf. A255346, A321504 .. A321506, A321489 (analog for k = 2, ..., 7 prime divisors).
Cf. A321493, A321494 .. A321497 (subsequences of the above: m or m+1 has more than k prime divisors).
Cf. A074851, A140077, A140078, A140079 (complementary subsequences: m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>2]; Select[Range[1300], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    select( is(n)=omega(n)>2&&omega(n+1)>2, [1..1300])

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 25 2025

A321495 Numbers k such that k and k+1 have at least 5 but not both exactly 5 distinct prime factors.

Original entry on oeis.org

728364, 1565564, 1774409, 1817529, 1923635, 2162094, 2187185, 2199834, 2225894, 2369850, 2557190, 2594514, 2659734, 2671305, 2794154, 2944689, 2964884, 3126045, 3139730, 3170244, 3244955, 3273809, 3279639, 3382379, 3387054, 3506810, 3555110, 3585945, 3686969, 3711630
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

Complement of A140079 (k and k+1 have exactly 5 distinct prime factors) in A321505 (k and k+1 have at least 5 distinct prime factors).

Crossrefs

Cf. A140079, A321505; A321494, A321496 (analog for 4 & 6 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n],PrimeNu[n+1]}},Min[v]>4 && v!={5,5}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    is(n)=vecmin(n=[omega(n), omega(n+1)])>4&&n!=[5,5]

Formula

A321505 Numbers k such that k and k+1 each have at least 5 distinct prime factors.

Original entry on oeis.org

254540, 310155, 378014, 421134, 432795, 483405, 486590, 486794, 488565, 489345, 507129, 522444, 545258, 549185, 558789, 558830, 567644, 577940, 584154, 591260, 598689, 627095, 634809, 637329, 663585, 666995, 667029, 678755, 687939, 690234, 707420, 712425, 720005, 720290, 728364, 743589
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

Equals A140079 up to a(34) but a(35) = 728364 is not in A140079, see A321495.

Crossrefs

Cf. A140079 (variant with "exactly 5"), A321495 (terms not in A140079).
Cf. A321504 (analog for k=4 prime factors), A321506 (analog for k=6).

Programs

  • Mathematica
    Select[Range[750000], PrimeNu[#] > 4 && PrimeNu[# + 1] > 4 &] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    is(n)=omega(n)>=5&&omega(n+1)>=5

A273879 Numbers k such that k and k+1 have 6 distinct prime factors.

Original entry on oeis.org

11243154, 13516580, 16473170, 16701684, 17348330, 19286805, 20333495, 21271964, 21849905, 22054515, 22527141, 22754589, 22875489, 24031370, 25348070, 25774329, 28098245, 28618394, 28625960, 30259229, 31846269, 32642805
Offset: 1

Views

Author

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite (Theorem 2).

Examples

			13516580 = 2^2 * 5 * 7 * 11 * 67 * 131 and 13516581 = 3 * 13 * 17 * 19 * 29 * 37 so 13516580 is in this sequence.
		

Crossrefs

Numbers k such that k and k+1 have j distinct prime factors: A006549 (j=1, apart from the first term), A074851 (j=2), A140077 (j=3), A140078 (j=4), A140079 (j=5).

Programs

  • Mathematica
    SequencePosition[PrimeNu[Range[3265*10^4]],{6,6}][[All,1]] (* Harvey P. Dale, Nov 20 2021 *)
  • PARI
    is(n)=omega(n)==6 && omega(n+1)==6

Formula

a(1) = A138206(2). - R. J. Mathar, Jul 15 2023
{k: k in A074969 and k+1 in A074969.} - R. J. Mathar, Jul 19 2023

A318964 Numbers k such that both k and k+1 are the product of exactly five distinct primes.

Original entry on oeis.org

378014, 421134, 483405, 486590, 486794, 489345, 507129, 545258, 549185, 558789, 558830, 634809, 637329, 663585, 667029, 690234, 720290, 776985, 782690, 823745, 824109, 853005, 853034, 855645, 873885, 883245, 892905, 935714, 945230, 968253, 987734, 999005, 1005081, 1013726
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			n | a(n)                           | a(n)+1
--+--------------------------------+--------------------------------
1 | 378014 = 2 * 7 * 13 * 31 *  67 | 378015 = 3 *  5 * 11 * 29 * 79
2 | 421134 = 2 * 3 *  7 * 37 * 271 | 421135 = 5 * 11 * 13 * 19 * 31
3 | 483405 = 3 * 5 * 13 * 37 *  67 | 483406 = 2 *  7 * 11 * 43 * 73
		

Crossrefs

Subsequence of A140079.

Programs

  • PARI
    is(n) = omega(n)==5 && omega(n+1)==5 && bigomega(n)==5 && bigomega(n+1)==5 \\ Felix Fröhlich, Sep 06 2018
Showing 1-10 of 12 results. Next