A242621
Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.
Original entry on oeis.org
2, 33, 1309, 27962, 3323705, 296602730, 41704979953
Offset: 1
The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
See
A242605-
A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See
A246470 for the quadruplet and
A246548 for the 5-tuple versions of this sequence.
A248204
Middle values in trios of products of 5 distinct primes.
Original entry on oeis.org
16467034, 18185870, 21134554, 21374354, 21871366, 22247554, 22412534, 22721586, 24845314, 25118094, 25228930, 25435334, 25596934, 26217246, 27140114, 29218630, 29752346, 30323734, 30563246, 31943066, 32663266, 33367894, 36055046, 38269022, 39738062, 40547066
Offset: 1
16467033=3*11*17*149*197,
16467034=2*19*23*83*227, and
16467035=5*13*37*41*167,
with no smaller similar trio. So a(1)=16467034. [Corrected by _James G. Merickel_, Jul 23 2015]
-
{
\\ This program checks all consecutives with elements not divisible \\
\\ by the squares of 2 or 3. More efficiency is required if enormous \\
\\ numbers of terms are sought and for the analog sequences beyond \\
\\ 6 prime factors. The start value is A093550(5). If a start other \\
\\ than this is chosen, one must be sure that (one of) s or u is \\
\\ adjusted if it needs to be. \\
n=16467034;s=[8,4,4,4,8,8];u=1;
while(1,
if(issquarefree(n) && issquarefree(n-1) && issquarefree(n+1) && omega(n)==5 && omega(n-1)==5 && omega(n+1)==5, print1(n" "));
n+=s[u];
if(u==6,u=1,u++)
)
} \\ James G. Merickel, Jul 23 2015
A364266
The first term in a chain of at least 3 consecutive numbers each with exactly 5 distinct prime factors.
Original entry on oeis.org
1042404, 3460280, 3818828, 3998664, 4638984, 4991964, 5540248, 5701254, 5715500, 5964958, 6772050, 6794084, 7237384, 7453964, 7459088, 7745318, 7757034, 7993194, 8083634, 8153430, 8168194, 8273628, 8340834, 8340980, 8414756, 8486994, 8698898, 8722634, 8758904
Offset: 1
1042404 = 2^2*3*11*53*149, 1042405 = 5*6*143*29*79 and 1042406 = 2*17*23*31*43 each have 5 distinct prime factors, so 1042404 is in the sequence.
-
omega := proc(n)
nops(numtheory[factorset](n)) ;
end proc:
for k from 1 do
if omega(k) = 5 then
if omega(k+1) = 5 then
if omega(k+2) = 5 then
print(k) ;
end if;
end if;
end if;
end do:
-
seq[lim_] := Module[{s = {}, q1 = False, q2 = False, q3}, Do[q3 = PrimeNu[k] == 5; If[q1 && q2 && q3, AppendTo[s, k-2]]; q1 = q2; q2 = q3, {k, 3, lim}]; s]; seq[10^7] (* Amiram Eldar, Oct 01 2024 *)
A242608
Start of a triple of consecutive squarefree numbers each of which has exactly 5 distinct prime factors.
Original entry on oeis.org
3323705, 3875934, 4393190, 4463822, 4929470, 5401626, 5654802, 6452535, 6465414, 6800934, 7427042, 7755890, 8233743, 8343906, 8406174, 8457942, 8593802, 8716323, 9186474, 9688382, 9812582, 9965415, 10364934, 10504074, 10870563, 10977834, 11460666, 11685894, 11993462, 12474602, 13151761
Offset: 1
a(1) = 3323705 = 5*7*11*89*97, a(1)+1 = 2*3*41*59*229 and a(1)+5 = 2*5*13*37*691 yield the first triple of consecutive squarefree numbers such that each of them is the product of five distinct primes.
-
(back(n)=for(i=1,2,until(issquarefree(n--),));n);for(n=10^6,2e7,issquarefree(n)||next;ndk==ndm&&ndk==5&&omega(n)==ndm&&print1(back(n)",");ndk=ndm;ndm=omega(n))
A176167
First of a triple of consecutive integers, each the product of 4 distinct primes.
Original entry on oeis.org
203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
Offset: 1
203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
-
f1[n_]:=Last/@FactorInteger[n]=={1,1,1,1};f2[n_]:=Max[Last/@FactorInteger[n]];lst={};Do[If[f1[n]&&f1[n+1]&&f1[n+2],AppendTo[lst,n]],{n,5*8!,7*9!}];lst
-
forstep(n=1+10^5,10^7,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==4||next(2));print1((n)",")) \\ M. F. Hasler, May 19 2014
A242492
For any integer m > 1, the m-th term of the sequence is the minimal squarefree integer x with exactly m prime divisors such that x+1 and x+2 are also squarefree integers with exactly m prime divisors.
Original entry on oeis.org
33, 1309, 203433, 16467033, 1990586013, 41704979953, 102099792179229
Offset: 2
33 = 3*11, 34 = 2*17, 35 = 5*7;
1309 = 7*11*17, 1310 = 2*5*131, 1311 = 3*19*23;
203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61;
16467033 = 3*11*17*149*197, 16467034 = 2*19*23*83*227, 16467035 = 5*13*37*41*167; (CPU time 48 seconds)
1990586013 = 3*13*29*67*109*241, 1990586014 = 2*23*37*43*59*461, 1990586015 = 5*11*17*19*89*1259. (CPU time 2 hours and 34 minutes)
- Hugh L. Montgomery and Robert C. Vaughan: "Multiplicative Number Theory: 1. Classical Theory", Cambridge studies in advanced mathematics, vol. 97, Cambridge University Press (2007)
Cf.
A242605-
A242608 for start of triples of consecutive squarefree numbers with m=2,...,5 prime factors,
A242621 for the analog of the present sequence in that spirit.
-
{default(primelimit,2M); lb=2; ub=2*10^9; m=1; i=0; j=0; loc=0; while(m<6, m=m+1; for(n=lb,ub, if(issquarefree(n)&&(m==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
Showing 1-6 of 6 results.
Comments