cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A242621 Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.

Original entry on oeis.org

2, 33, 1309, 27962, 3323705, 296602730, 41704979953
Offset: 1

Views

Author

M. F. Hasler, May 18 2014

Keywords

Comments

As the example of a(4)=27962 shows, "consecutive squarefree numbers" means consecutive elements of A005117, not necessarily consecutive integers that (additionally) are squarefree; this would be a more restrictive condition.
a(8) <= 102099792179229 because A093550 - 1 is an upper bound of the present sequence.

Examples

			The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
		

Crossrefs

See A242605-A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See A246470 for the quadruplet and A246548 for the 5-tuple versions of this sequence.
See A039833, A066509, A176167 and A192203 for triples of consecutive numbers which are squarefree and have m=2,..,5 prime factors.

Extensions

Edited and a(6)-a(7) added by Hans Havermann, Aug 27 2014

A248203 Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.

Original entry on oeis.org

203434, 214490, 225070, 258014, 294594, 313054, 315722, 352886, 389390, 409354, 418846, 421630, 452354, 464386, 478906, 485134, 500906, 508046, 508990, 526030, 528410, 538746, 542270, 542794, 548302, 556870, 559690, 569066, 571234, 579886, 582406, 588730
Offset: 1

Views

Author

James G. Merickel, Oct 28 2014

Keywords

Comments

A subsequence of A066509 and offset by one from A176167.

Examples

			203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by _James G. Merickel_, Jul 23 2015]
		

Crossrefs

Programs

  • Mathematica
    f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* Vincenzo Librandi, Aug 02 2015 *)
  • PARI
    {
    \\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\
    \\ program is to run from a different starting value of n, it must not \\
    \\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\
    \\ to 2 modulo 4), and either u or the vector s needs to be brought into \\
    \\ agreement. \\
    n=203434;s=[4,4,8,8,8,4];u=1;
    while(1,
      if(issquarefree(n) &&
        issquarefree(n-1) &&
        issquarefree(n+1) &&
        omega(n)==4 &&
        omega(n-1)==4 &&
        omega(n+1)==4,
        print1(n, ", "));
      n+=s[u];if(u==6,u=1,u++))
    } \\ James G. Merickel, Jul 23 2015
    
  • PARI
    is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1));
    first(m)=my(v=vector(m),i,t=2);for(i=1,m,while(!is_ok(t),t++);v[i]=t;t++);v; /* Anders Hellström, Aug 01 2015 */

Formula

a(n) = A176167(n)+1.

A192203 Numbers k such that k, k+1, and k+2 are each the product of exactly 5 distinct primes.

Original entry on oeis.org

16467033, 18185869, 21134553, 21374353, 21871365, 22247553, 22412533, 22721585, 24845313, 25118093, 25228929, 25345333, 25596933, 26217245, 27140113, 29218629, 29752345, 30323733, 30563245, 31943065, 32663265, 33367893, 36055045, 38269021, 39738061, 40547065
Offset: 1

Views

Author

Gil Broussard, Jun 25 2011

Keywords

Comments

Numbers k such that k, k+1, and k+2 are all members of A046387. - N. J. A. Sloane, Jul 17 2024
A subsequence of A242608 intersect A016813. - M. F. Hasler, May 19 2014
All terms are congruent to 1 mod 4. - Zak Seidov, Dec 22 2014

Examples

			a(1)=16467033 because it is the product of 5 distinct primes (3,11,17,149,197), and so are a(1)+1: 16467034 (2,19,23,83,227), and a(1)+2: 16467035 (5,13,37,41,167).
		

Crossrefs

Cf. A046387, A140079. Subsequence of A318964 and of A364266.

Programs

  • Mathematica
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==5,1,0],{n,164*10^5,406*10^5}],{1,1,1}][[;;,1]]+164*10^5-1 (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    forstep(n=1+10^7,1e8,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==5||next(2));print1((n)", ")) \\ M. F. Hasler, May 19 2014

A364309 Numbers k such that k, k+1 and k+2 have exactly 4 distinct prime factors.

Original entry on oeis.org

37960, 44484, 45694, 50140, 51428, 55130, 55384, 61334, 63364, 64294, 67164, 68264, 68474, 70004, 70090, 71708, 72708, 76152, 80444, 81548, 81718, 82040, 84434, 85490, 86240, 90363, 95380, 97382, 98020, 99084, 99384, 99428, 99788, 100164, 100490, 100594, 102254, 102542, 104804, 105994, 108204
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2023

Keywords

Examples

			37960 = 2^3*5*13*73, 37961 = 7*11*17*29, and 37962 = 2*3^3*19*37 each have 4 distinct prime factors, so 37960 is in the sequence.
		

Crossrefs

Subsequence of A006073 and of A140078.
A176167 is a subsequence.
Cf. A364307 (2 factors), A364308 (3 factors), A364266 (5 factors), A364265 (6 factors), A001221, A087966, A168628.

Programs

  • Mathematica
    q[n_] := q[n] = PrimeNu[n] == 4; Select[Range[10^5], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087966(3).
a(n)+1 = A168628(n).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 4}.

A242492 For any integer m > 1, the m-th term of the sequence is the minimal squarefree integer x with exactly m prime divisors such that x+1 and x+2 are also squarefree integers with exactly m prime divisors.

Original entry on oeis.org

33, 1309, 203433, 16467033, 1990586013, 41704979953, 102099792179229
Offset: 2

Views

Author

Keywords

Comments

The five terms for m = 2,3,4,5,6 were computed with the aid of PARI/GP. But it seems to be rather difficult to compute higher terms, if they exist at all.
The distribution of squarefree integers with exactly m prime factors is given in the book by Montgomery and Vaughan, Multiplicative Number Theory, but I do not have access to it and do not know whether it also addresses the problem of three consecutive numbers of this kind.

Examples

			33 = 3*11, 34 = 2*17, 35 = 5*7;
1309 = 7*11*17, 1310 = 2*5*131, 1311 = 3*19*23;
203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61;
16467033 = 3*11*17*149*197, 16467034 = 2*19*23*83*227, 16467035 = 5*13*37*41*167; (CPU time 48 seconds)
1990586013 = 3*13*29*67*109*241, 1990586014 = 2*23*37*43*59*461, 1990586015 = 5*11*17*19*89*1259. (CPU time 2 hours and 34 minutes)
		

References

  • Hugh L. Montgomery and Robert C. Vaughan: "Multiplicative Number Theory: 1. Classical Theory", Cambridge studies in advanced mathematics, vol. 97, Cambridge University Press (2007)

Crossrefs

Cf. A007675 (any m), A039833 (m=2), A066509 (m=3), A176167 (m=4), A192203 (m=5), A068088 (sextets with gap).
Cf. A242605-A242608 for start of triples of consecutive squarefree numbers with m=2,...,5 prime factors, A242621 for the analog of the present sequence in that spirit.

Programs

  • PARI
    {default(primelimit,2M); lb=2; ub=2*10^9; m=1; i=0; j=0; loc=0; while(m<6, m=m+1; for(n=lb,ub, if(issquarefree(n)&&(m==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
    				

Formula

a(n) = A093550(n)-1. - M. F. Hasler, May 20 2014
Showing 1-5 of 5 results.