cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A140077 Numbers n such that n and n+1 have 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Sep 14 2015
See A321503 for numbers n such that n & n+1 have at least 3 prime divisors, disjoint union of this and A321493, the terms of A321503 which are not in this sequence. A321493 has A140078 as a subsequence, which in turn is subsequence of A321504, and so on. Since n and n+1 can't share a prime factor, we have a(1) > sqrt(p(3+3)#) > A000196(A002110(3+3)). Note that A000196(A002110(3+4)) = A321493(1) exactly! - M. F. Hasler, Nov 13 2018

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 3 && Length[FactorInteger[n + 1]] == 3, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    SequencePosition[PrimeNu[Range[1250]],{3,3}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 27 2017 *)
  • PARI
    is(n)=omega(n)==3&&omega(n+1)==3 \\ Charles R Greathouse IV, Sep 14 2015

Formula

{k: k in A033992 and k+1 in A033992}. - R. J. Mathar, Jul 19 2023

A140079 Numbers n such that n and n+1 have 5 distinct prime factors.

Original entry on oeis.org

254540, 310155, 378014, 421134, 432795, 483405, 486590, 486794, 488565, 489345, 507129, 522444, 545258, 549185, 558789, 558830, 567644, 577940, 584154, 591260, 598689, 627095, 634809, 637329, 663585, 666995, 667029, 678755, 687939, 690234
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

For the smallest number r such that r and r+1 have n distinct prime factors, see A093548.
Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
Subsequence of the variant A321505 defined with "at least 5" instead of "exactly 5" distinct prime factors. See A321495 for the differences. - M. F. Hasler, Nov 12 2018
The subset of numbers where n and n+1 are also squarefree gives A318964. - R. J. Mathar, Jul 15 2023

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 5 && Length[FactorInteger[n + 1]] == 5, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    Transpose[SequencePosition[Table[If[PrimeNu[n]==5,1,0],{n,700000}],{1,1}]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Jul 25 2015 *)
  • PARI
    is(n)=omega(n)==5 && omega(n+1)==5 \\ Charles R Greathouse IV, Jun 02 2016

Formula

{k: k in A051270 and k+1 in A051270}. - R. J. Mathar, Jul 19 2023

A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors.

Original entry on oeis.org

14, 20, 21, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175, 176, 177, 183, 184
Offset: 1

Views

Author

Benoit Cloitre, Sep 10 2002

Keywords

Comments

Subsequence of A006049. - Michel Marcus, May 06 2016

Examples

			20=2^2*5 21=3*7 hence 20 is in the sequence.
		

Crossrefs

Analogous sequences for m distinct prime factors: this sequence (m=2), A140077 (m=3), A140078 (m=4), A140079 (m=5), A273879 (m=6).
Cf. A093548.
Equals A255346 \ A321502.

Programs

  • GAP
    Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # Muniru A Asiru, Dec 05 2018
    
  • Magma
    [n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // Vincenzo Librandi, Dec 05 2018
    
  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* Harvey P. Dale, Mar 12 2015 *)
  • PARI
    isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ Michel Marcus, May 06 2016
    
  • Python
    import sympy
    from sympy.ntheory.factor_ import primenu
    for n in range(1,200):
        if primenu(n)==2 and primenu(n+1)==2:
            print(n, end=', '); # Stefano Spezia, Dec 05 2018

Formula

a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13...
{k: A001221(k) = A001221(k+1) = 2}. - R. J. Mathar, Jul 18 2023

A321494 Numbers k such that k and k+1 have at least 4 but not both exactly 4 distinct prime factors.

Original entry on oeis.org

38570, 40754, 51414, 51765, 58695, 60605, 62985, 66044, 68585, 70889, 71070, 73185, 73814, 74865, 77349, 82004, 83265, 83720, 83979, 85085, 87009, 90804, 90915, 91805, 91884, 92378, 94094, 94829, 96459, 97565, 98769, 98889, 100814, 101269, 101660, 104005, 104754, 105468, 107184, 108030, 108185, 108965
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

A321504 lists numbers n such that k and k+1 both have at least 4 distinct prime factors, while A140078 lists numbers such that k and k+1 have exactly 4 distinct prime factors. This sequence is the complement of the latter in the former, it consists of terms with indices (124, 214, 219, 276, 321, 415, ...) of the former.

Crossrefs

Cf. A140078, A321504; A321493, A321496 (analog for 3 & 5 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n],PrimeNu[n+1]}},Min[v]>3 && v!={4,4}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    is(n)=vecmin(n=[omega(n),omega(n+1)])>=4&&n!=[4,4]

Formula

A321503 Numbers m such that m and m+1 both have at least 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 714, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2018

Keywords

Comments

Disjoint union of A140077 (omega({m, m+1}) = {3}) and A321493 (not both have exactly 3 prime divisors). The latter contains terms with indices {15, 60, 82, 98, 99, 104, ...} of this sequence.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(A002110(3+3)), A002110 = primorial.

Crossrefs

Subsequence of A000977.
Cf. A255346, A321504 .. A321506, A321489 (analog for k = 2, ..., 7 prime divisors).
Cf. A321493, A321494 .. A321497 (subsequences of the above: m or m+1 has more than k prime divisors).
Cf. A074851, A140077, A140078, A140079 (complementary subsequences: m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>2]; Select[Range[1300], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    select( is(n)=omega(n)>2&&omega(n+1)>2, [1..1300])

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 25 2025

A321504 Numbers k such that k and k+1 each have at least 4 distinct prime factors.

Original entry on oeis.org

7314, 8294, 8645, 9009, 10659, 11570, 11780, 11934, 13299, 13629, 13845, 14420, 15105, 15554, 16554, 16835, 17204, 17390, 17654, 17765, 18095, 18290, 18444, 18920, 19005, 19019, 19095, 19227, 20349, 20405, 20769, 21164, 21489, 21735, 22010, 22154, 22659, 23001, 23114, 23484, 23529, 23540, 23919, 24395
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

Equals A140078 up to a(123) but a({124, 214, 219, 276, 321, 415, ...}) = { 38570, 51414, 51765, 58695, 62985, 71070, ...} are not in A140078, see A321494.

Crossrefs

Cf. A321505, A321506 (variant for k=5 & k=6 prime factors).

Programs

  • Mathematica
    SequencePosition[Table[If[PrimeNu[n]>3,1,0],{n,25000}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    is(n)=omega(n)>=4&&omega(n+1)>=4

A176167 First of a triple of consecutive integers, each the product of 4 distinct primes.

Original entry on oeis.org

203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A242607 and A016813. - M. F. Hasler, May 19 2014

Examples

			203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
		

Crossrefs

Cf. A039833, A066509, A192203. Subsequence of A140078 and of A318896.

Programs

  • Mathematica
    f1[n_]:=Last/@FactorInteger[n]=={1,1,1,1};f2[n_]:=Max[Last/@FactorInteger[n]];lst={};Do[If[f1[n]&&f1[n+1]&&f1[n+2],AppendTo[lst,n]],{n,5*8!,7*9!}];lst
  • PARI
    forstep(n=1+10^5,10^7,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==4||next(2));print1((n)",")) \\ M. F. Hasler, May 19 2014

A318896 Numbers k such that k and k+1 are the product of exactly four distinct primes.

Original entry on oeis.org

7314, 8294, 8645, 11570, 13629, 13845, 15105, 15554, 16554, 17390, 17654, 18290, 19005, 20405, 20769, 21489, 22010, 22154, 23001, 23114, 23529, 24530, 24765, 24870, 24969, 25346, 26690, 26894, 26961, 27434, 27965, 28105, 29145, 29210, 29414, 29469, 29666, 30414
Offset: 1

Views

Author

Seiichi Manyama, Sep 05 2018

Keywords

Comments

This sequence is different from A140078. For example, A140078(4) = 9009 = 3^2 * 7 * 11 * 13 is not a term.

Examples

			n | a(n)                    | a(n)+1
--+-------------------------+-------------------------
1 | 7314 = 2 *  3 * 23 * 53 | 7315 = 5 * 7 * 11 *  19
2 | 8294 = 2 * 11 * 13 * 29 | 8295 = 3 * 5 *  7 *  79
3 | 8645 = 5 *  7 * 13 * 19 | 8646 = 2 * 3 * 11 * 131
		

Crossrefs

Subsequence of A140078.

Programs

  • PARI
    is(n) = omega(n)==4 && omega(n+1)==4 && bigomega(n)==4 && bigomega(n+1)==4 \\ Felix Fröhlich, Sep 05 2018
    
  • PARI
    is(n) = factor(n)[, 2]~ == [1, 1, 1, 1] && factor(n+1)[, 2]~ == [1, 1, 1, 1] \\ David A. Corneth, Sep 06 2018

A273879 Numbers k such that k and k+1 have 6 distinct prime factors.

Original entry on oeis.org

11243154, 13516580, 16473170, 16701684, 17348330, 19286805, 20333495, 21271964, 21849905, 22054515, 22527141, 22754589, 22875489, 24031370, 25348070, 25774329, 28098245, 28618394, 28625960, 30259229, 31846269, 32642805
Offset: 1

Views

Author

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite (Theorem 2).

Examples

			13516580 = 2^2 * 5 * 7 * 11 * 67 * 131 and 13516581 = 3 * 13 * 17 * 19 * 29 * 37 so 13516580 is in this sequence.
		

Crossrefs

Numbers k such that k and k+1 have j distinct prime factors: A006549 (j=1, apart from the first term), A074851 (j=2), A140077 (j=3), A140078 (j=4), A140079 (j=5).

Programs

  • Mathematica
    SequencePosition[PrimeNu[Range[3265*10^4]],{6,6}][[All,1]] (* Harvey P. Dale, Nov 20 2021 *)
  • PARI
    is(n)=omega(n)==6 && omega(n+1)==6

Formula

a(1) = A138206(2). - R. J. Mathar, Jul 15 2023
{k: k in A074969 and k+1 in A074969.} - R. J. Mathar, Jul 19 2023

A364309 Numbers k such that k, k+1 and k+2 have exactly 4 distinct prime factors.

Original entry on oeis.org

37960, 44484, 45694, 50140, 51428, 55130, 55384, 61334, 63364, 64294, 67164, 68264, 68474, 70004, 70090, 71708, 72708, 76152, 80444, 81548, 81718, 82040, 84434, 85490, 86240, 90363, 95380, 97382, 98020, 99084, 99384, 99428, 99788, 100164, 100490, 100594, 102254, 102542, 104804, 105994, 108204
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2023

Keywords

Examples

			37960 = 2^3*5*13*73, 37961 = 7*11*17*29, and 37962 = 2*3^3*19*37 each have 4 distinct prime factors, so 37960 is in the sequence.
		

Crossrefs

Subsequence of A006073 and of A140078.
A176167 is a subsequence.
Cf. A364307 (2 factors), A364308 (3 factors), A364266 (5 factors), A364265 (6 factors), A001221, A087966, A168628.

Programs

  • Mathematica
    q[n_] := q[n] = PrimeNu[n] == 4; Select[Range[10^5], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087966(3).
a(n)+1 = A168628(n).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 4}.
Showing 1-10 of 18 results. Next