cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A140078 Numbers k such that k and k+1 have 4 distinct prime factors.

Original entry on oeis.org

7314, 8294, 8645, 9009, 10659, 11570, 11780, 11934, 13299, 13629, 13845, 14420, 15105, 15554, 16554, 16835, 17204, 17390, 17654, 17765, 18095, 18290, 18444, 18920, 19005, 19019, 19095, 19227, 20349, 20405, 20769, 21164, 21489, 21735
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
The subsequence of terms where k and k+1 are also squarefree is A318896. - R. J. Mathar, Jul 15 2023

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 161 (entry for 7314).

Crossrefs

Similar sequences with k distinct prime factors: A074851 (k=2), A140077 (k=3), this sequence (k=4), A140079 (k=5).
Cf. A093548.
Equals A321504 \ A321494.

Programs

Formula

{k: k in A033993 and k+1 in A033993}. - R. J. Mathar, Jul 19 2023

Extensions

Link provided by Harvey P. Dale, Jun 21 2013

A052215 a(n) = smallest number m such that m and m+1 are the product of exactly n distinct primes.

Original entry on oeis.org

2, 14, 230, 7314, 378014, 11243154, 965009045, 65893166030, 5702759516090, 605247139068494, 78971815814237709, 22593106657425552170
Offset: 1

Views

Author

Erich Friedman, Jan 29 2000

Keywords

Comments

Prime factors may not be repeated in m and m+1. The difference between this sequence and A093548 is that in the latter, prime factors may be repeated. So the present sequence imposes more stringent conditions than A093548, hence a(n) >= A093548(n). - N. J. A. Sloane, Nov 21 2015
A115186(n) <= A093548(n) <= a(n). - Zak Seidov, Jan 16 2015
2^63 < a(12) <= 22593106657425552170. [Donovan Johnson, Oct 23 2008]
a(12) confirmed to be the upper limit of the range above. - Bert Dobbelaere, Jun 27 2019

Examples

			14 and 15 are both the product of 2 primes.
230 is the 3rd entry because we have (230=2*5*23, 231=3*7*11).
		

Crossrefs

Cf. A093548 (another version), A093549, A093550, A115186, A318896.
Subsequence of A005117.

Extensions

More terms from Naohiro Nomoto, Jul 08 2001
a(7) from Farideh Firoozbakht, Apr 06 2004
a(8)-a(10) from Martin Fuller, Jan 17 2006
a(11) from Donovan Johnson, Oct 23 2008
a(12) from Bert Dobbelaere, Jun 27 2019

A176167 First of a triple of consecutive integers, each the product of 4 distinct primes.

Original entry on oeis.org

203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A242607 and A016813. - M. F. Hasler, May 19 2014

Examples

			203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
		

Crossrefs

Cf. A039833, A066509, A192203. Subsequence of A140078 and of A318896.

Programs

  • Mathematica
    f1[n_]:=Last/@FactorInteger[n]=={1,1,1,1};f2[n_]:=Max[Last/@FactorInteger[n]];lst={};Do[If[f1[n]&&f1[n+1]&&f1[n+2],AppendTo[lst,n]],{n,5*8!,7*9!}];lst
  • PARI
    forstep(n=1+10^5,10^7,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==4||next(2));print1((n)",")) \\ M. F. Hasler, May 19 2014

A086263 Smaller of two consecutive squarefree numbers having equal numbers of prime factors.

Original entry on oeis.org

2, 14, 21, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 230, 253, 285, 298, 301, 302, 326, 334, 381, 393, 394, 429, 434, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 609, 622, 633, 634
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 14 2003

Keywords

Comments

a(k) is a term of A075039 iff a(k)+1 = a(k+1).
If a prime divides a(n) then it does not divide a(n) + 1. If a prime divides a(n) + 1, then it does not divide a(n). The sets of prime divisors of a(n) and a(n) + 1 are disjoint. - Torlach Rush, Jan 13 2018

Examples

			230 = 2*5*23 and 230+1 = 3*7*11, therefore 230 is a term.
		

Crossrefs

Cf. A005117, A263990 (2 prime factors), A215217 (3 prime factors), A318896 (4 prime factors), A318964 (5 prime factors), A001221, A001222, A075039.

Programs

  • Mathematica
    Select[Range[2, 634], SquareFreeQ[#] && SquareFreeQ[# + 1] && Length[FactorInteger[#]] == Length[FactorInteger[# + 1]] &] (* T. D. Noe, Jun 26 2013 *)
    #[[1,1]]&/@Select[Partition[Table[{n,If[SquareFreeQ[n],1,0], PrimeOmega[ n]},{n,700}],2,1],#[[1,2]]==#[[2,2]]==1&&#[[1,3]]==#[[2,3]]&] (* Harvey P. Dale, Dec 13 2014 *)
  • PARI
    for(n=1,10^3, if ( issquarefree(n) && issquarefree(n+1) && (omega(n)==omega(n+1)) , print1(n,", "))); \\ Joerg Arndt, Jun 26 2013

Formula

A001221(a(n)) = A001222(a(n)) = A001221(a(n)+1) = A001222(a(n)+1).

A318964 Numbers k such that both k and k+1 are the product of exactly five distinct primes.

Original entry on oeis.org

378014, 421134, 483405, 486590, 486794, 489345, 507129, 545258, 549185, 558789, 558830, 634809, 637329, 663585, 667029, 690234, 720290, 776985, 782690, 823745, 824109, 853005, 853034, 855645, 873885, 883245, 892905, 935714, 945230, 968253, 987734, 999005, 1005081, 1013726
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			n | a(n)                           | a(n)+1
--+--------------------------------+--------------------------------
1 | 378014 = 2 * 7 * 13 * 31 *  67 | 378015 = 3 *  5 * 11 * 29 * 79
2 | 421134 = 2 * 3 *  7 * 37 * 271 | 421135 = 5 * 11 * 13 * 19 * 31
3 | 483405 = 3 * 5 * 13 * 37 *  67 | 483406 = 2 *  7 * 11 * 43 * 73
		

Crossrefs

Subsequence of A140079.

Programs

  • PARI
    is(n) = omega(n)==5 && omega(n+1)==5 && bigomega(n)==5 && bigomega(n+1)==5 \\ Felix Fröhlich, Sep 06 2018
Showing 1-5 of 5 results.