A051302 Numbers whose square can be expressed as the sum of two positive cubes in more than one way.
77976, 223587, 623808, 894348, 1788696, 2105352, 2989441, 4298427, 4672423, 4990464, 5986575, 6036849, 7154784, 8437832, 9747000, 14309568, 16842816, 23915528, 24147396, 24770529, 26745768, 27948375, 34387416, 34634719, 36570744, 37379384, 39923712, 47892600
Offset: 1
Examples
2989441^2 = 1729^3+20748^3 = 15561^3+17290^3, so 2989441 is in the sequence.
Links
- Jon E. Schoenfield and Ray Chandler, Table of n, a(n) for n = 1..774
Programs
-
Mathematica
(* Warning: this script is only a recomputation of the original b-file of 64 terms from Jon E. Schoenfield, and should not be used to extend the data. *) max = 310000000; cubeFreeParts = {361, 8281, 33124, 159201, 169309, 221725, 565068, 628849, 917427, 1054729, 2370963, 2989441, 4672423, 8968323, 9402967, 9795747, 34634719}; r[x_] := Reduce[0 < y <= z && x^2 == y^3 + z^3, {y, z}, Integers]; okQ[primes_] := Intersection[{2, 3, 5, 7, 11, 13, 19, 31, 43, 61, 67, 79, 127, 139, 151, 181}, primes] == primes; crop[n_] := Reap[For[m = 1, True, m++, x = n*m^3; If[x > max, Break[]]; If[okQ[FactorInteger[x][[All, 1]]], If[Head[rx = r[x]] === Or, Print["x = ", x, " ", rx]; Sow[x]];]]][[2, 1]]; A051302 = crop /@ cubeFreeParts // Flatten // Sort (* Jean-François Alcover, Jul 02 2017 *)
-
PARI
T=thueinit('x^3+1, 1); is(n)=my(v=thue(T, n^2)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 10 2016
Extensions
Definition corrected by Jon E. Schoenfield, Aug 27 2006
More terms from Jon E. Schoenfield, Oct 08 2006
Extended by Ray Chandler, Nov 22 2011
Comments