cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051366 Number of 6-element families of an n-element set such that every 4 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 0, 112, 39761, 5318420, 506289623, 41378309308, 3133123494417, 227657567966500, 16152548751321851, 1129224692910819164, 78169242144478858373, 5373159786842137703140, 367368738925063893430959
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Programs

  • Mathematica
    Table[1/6! (64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/6!)*(64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120).