A051404 Numbers k such that neither 4 nor 9 divides binomial(2k-1,k) (almost certainly finite).
1, 2, 3, 4, 6, 9, 10, 12, 18, 33, 34, 36, 40, 64, 66, 192, 256, 264, 272, 513, 514, 516, 576, 768, 1026, 1056, 2304, 16392, 65664, 81920, 532480, 545259520
Offset: 1
Examples
For n = 64 we have s_2(64) = 1, s_3(n) = 4, s_3(64-1) = 3, s_3(2*64-1) = 5 and 4+3-5 = 2. So 64 is in the sequence. - _Vladimir Shevelev_, Oct 30 2013
References
- Adrien-Marie Legendre, Théorie de Nombres, Firmin Didot Frères, Paris, 1830.
Links
- E. E. Kummer, Uber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew Math. 44 (1852), 93-146.
- Don Reble, A051404, SeqFan Post, Oct 30 2013.
- Vladimir Shevelev, Binomial coefficient predictors, J. of Integer Sequences, Vol. 14 (2011), Article 11.2.8.
- Vladimir Shevelev, Re: A051404, SeqFan Post, Oct 30 2013.
- Wikipedia, Kummer's Theorem.
Programs
-
Mathematica
s[n_] :=DigitSum[n, 3]; With[{emax = 30}, Select[Flatten@ Table[2^e1 + If[e2 < 0, 0, 2^e2], {e1, 0, emax}, {e2, -1, e1-1}], s[#] + s[#-1] - s[2*#-1] <= 2 &]] (* Amiram Eldar, Aug 26 2025 *)
-
PARI
isok(k) = my(b=binomial(2*k-1,k)); (b%4) && (b%9); \\ Michel Marcus, Jan 22 2025
-
PARI
s(n) = sumdigits(n, 3); list(emax = 30) = {my(k); for(e1 = 0, emax, for(e2 = -1, e1-1, k = 1 << e1 + if(e2 >= 0, 1 << e2); if(s(k) + s(k-1) - s(2*k-1) <= 2, print1(k, ", "))));} \\ Amiram Eldar, Aug 26 2025
Comments