A051470 a(n) is least value of m for which the sum of Liouville's function from 1 to m is n.
1, 906150258, 906150259, 906150260, 906150263, 906150264, 906150331, 906150334, 906150337, 906150338, 906150339, 906150358, 906150359, 906150362, 906150363, 906150368, 906150387, 906150388, 906150389, 906150406, 906150407
Offset: 1
Keywords
Examples
The sum of Liouville's function from 1 through 906150258 is 2, that is the smallest value, so a(2)=906150258.
References
- R. J. Anderson and H. M. Stark, Oscillation theorems, Analytic Number Theory (1980); Lecture Notes in Mathematics 899 (1981), pp. 79-106.
Links
- Donovan Johnson and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..100000 (terms a(1)-a(829) from _Donovan Johnson_)
- P. Borwein, R. Ferguson, and M. Mossinghoff, Sign changes in sums of the Liouville function, Mathematics of Computation 77 (2008), pp. 1681-1694.
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
- M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3, 187-189, 1980.
Programs
-
PARI
print1(r=1);t=0;for(n=906150257,906400000,t+=(-1)^bigomega(n);if(t>r,r=t;print1(", "n))) \\ Charles R Greathouse IV, Jun 14 2011
Comments