A028488 Numbers k such that the summatory Liouville function L(k) (A002819) is zero.
2, 4, 6, 10, 16, 26, 40, 96, 586, 906150256, 906150294, 906150308, 906150310, 906150314, 906151516, 906151576, 906152172, 906154582, 906154586, 906154590, 906154594, 906154604, 906154606, 906154608, 906154758, 906154760, 906154762
Offset: 1
Links
- Donovan Johnson and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..317312 (a(1)-a(252) from Donovan Johnson)
- P. Borwein, R. Ferguson, and M. Mossinghoff, Sign changes in sums of the Liouville function, Mathematics of Computation 77 (2008), pp. 1681-1694.
- G. Pólya, Verschiedene Bemerkungen zur Zahlentheorie, Jahresber. DMV 28, 31-40, 1919.
- M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3, 187-189, 1980.
- Hiroaki Yamanouchi, Values of L(n) from 2*10^14 to 3.75*10^14 (interval = 5*10^9)
- Eric Weisstein's World of Mathematics, Liouville Function
- Eric Weisstein's World of Mathematics, Polya Conjecture
Programs
-
Maple
B:= [seq((-1)^numtheory:-bigomega(i),i=1..10^5)]: L:= ListTools:-PartialSums(B): select(t -> L[t]=0, [$1..10^5]); # Robert Israel, Aug 27 2015
-
Mathematica
Position[Table[Sum[LiouvilleLambda@ k, {k, 1, n}], {n, 1000}], n_ /; n == 0] // Flatten (* Michael De Vlieger, Aug 27 2015 *) Position[Accumulate[LiouvilleLambda[Range[1000]]],0]//Flatten (* Harvey P. Dale, Aug 10 2022 *)
Extensions
More terms from Hans Havermann, Jun 24 2002
Comments