cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A028488 Numbers k such that the summatory Liouville function L(k) (A002819) is zero.

Original entry on oeis.org

2, 4, 6, 10, 16, 26, 40, 96, 586, 906150256, 906150294, 906150308, 906150310, 906150314, 906151516, 906151576, 906152172, 906154582, 906154586, 906154590, 906154594, 906154604, 906154606, 906154608, 906154758, 906154760, 906154762
Offset: 1

Views

Author

Keywords

Comments

a(253) > 2*10^14 according to the calculations of Borwein, Ferguson, & Mossinghoff. Most likely a(253) = 351100332278250. - Charles R Greathouse IV, Jun 14 2011
L(23156358837978983978) = 0 and L(k) < 0 for k from 2.3156354*10^19 to 23156358837978983977. - Hiroaki Yamanouchi, Oct 03 2015
All terms are even since k and A002819(k) have the same parity. - Jianing Song, Aug 06 2021
According to Pólya, numbers (p-3)/4 are members of this sequence, with p a Heegner number > 7 (that is, p is one of 11, 19, 43, 67, and 163). - Friedjof Tellkamp, Feb 15 2025

Crossrefs

Cf. A008836 (Liouville's function), A002819, A051470.
Cf. A003173 (Heegner numbers).

Programs

  • Maple
    B:= [seq((-1)^numtheory:-bigomega(i),i=1..10^5)]:
    L:= ListTools:-PartialSums(B):
    select(t -> L[t]=0, [$1..10^5]); # Robert Israel, Aug 27 2015
  • Mathematica
    Position[Table[Sum[LiouvilleLambda@ k, {k, 1, n}], {n, 1000}], n_ /; n == 0] // Flatten (* Michael De Vlieger, Aug 27 2015 *)
    Position[Accumulate[LiouvilleLambda[Range[1000]]],0]//Flatten (* Harvey P. Dale, Aug 10 2022 *)

Extensions

More terms from Hans Havermann, Jun 24 2002

A072203 (Number of oddly factored numbers <= n) - (number of evenly factored numbers <= n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 6, 7, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8, 9, 8, 9, 10, 11, 10, 9, 10, 9, 8, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 2, 3, 4, 3, 4, 5, 6
Offset: 1

Views

Author

Bill Dubuque (wgd(AT)zurich.ai.mit.edu), Jul 03 2002

Keywords

Comments

A number m is oddly or evenly factored depending on whether m has an odd or even number of prime factors, e.g., 12 = 2*2*3 has 3 factors so is oddly factored.
Polya conjectured that a(n) >= 0 for all n, but this was disproved by Haselgrove. Lehman gave the first explicit counterexample, a(906180359) = -1; the first counterexample is at 906150257 (Tanaka).

References

  • G. Polya, Mathematics and Plausible Reasoning, S.8.16.

Crossrefs

Programs

  • Haskell
    a072203 n = a072203_list !! (n-1)
    a072203_list = scanl1 (\x y -> x + 2*y - 1) a066829_list
    -- Reinhard Zumkeller, Nov 19 2011
    
  • Mathematica
    f[n_Integer] := Length[Flatten[Table[ #[[1]], {#[[2]]}] & /@ FactorInteger[n]]]; g[n_] := g[n] = g[n - 1] + If[ EvenQ[ f[n]], -1, 1]; g[1] = 0; Table[g[n], {n, 1, 103}]
    Join[{0},Accumulate[Rest[Table[If[OddQ[PrimeOmega[n]],1,-1],{n,110}]]]] (* Harvey P. Dale, Mar 10 2013 *)
    Table[1 - Sum[(-1)^PrimeOmega[i], {i, 1, n}], {n, 1, 100}] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    a(n) = 1 - sum(i=1, n, (-1)^bigomega(i));
    for(n=1, 100, print1(a(n),", ")) \\ Indranil Ghosh, Mar 17 2017
    
  • Python
    from functools import reduce
    from operator import ixor
    from sympy import factorint
    def A072203(n): return 1+sum(1 if reduce(ixor, factorint(i).values(),0)&1 else -1 for i in range(1,n+1)) # Chai Wah Wu, Dec 20 2022

Formula

a(n) = 1 - A002819(n). - T. D. Noe, Feb 06 2007

Extensions

Edited and extended by Robert G. Wilson v, Jul 13 2002
Comment corrected by Charles R Greathouse IV, Mar 08 2010

A175201 a(n) is the smallest k such that the n consecutive values lambda(k), lambda(k+1), ..., lambda(k+n-1) = 1, where lambda(m) is the Liouville function A008836(m).

Original entry on oeis.org

1, 9, 14, 33, 54, 140, 140, 213, 213, 1934, 1934, 1934, 35811, 38405, 38405, 200938, 200938, 389409, 1792209, 5606457, 8405437, 8405437, 8405437, 8405437, 68780189, 68780189, 68780189, 68780189, 880346227, 880346227, 880346227, 880346227, 880346227
Offset: 1

Views

Author

Michel Lagneau, Mar 04 2010

Keywords

Comments

Short history of conjecture L(n) <= 0 for all n >= 2 by Deborah Tepper Haimo, where L(n) is the summatory Liouville function A002819(n). George Polya conjectured 1919 that L(n) <= 0 for all n >= 2. The conjecture was generally deemed true for nearly 40 years, until 1958, when C. B. Haselgrove proved that L(n) > 0 for infinitely many n. In 1962, R. S. Lehman found that L(906180359) = 1 and in 1980, M. Tanaka discovered that the smallest counterexample of the Polya conjecture occurs when n = 906150257.

Examples

			a(1) = 1 and L(1) = 1;
a(2) = 9 and L(9) = L(10)= 1;
a(3) = 14 and L(14) = L(15) = L(16) = 1;
a(4) = 33 and L(33) = L(34) = L(35) = L(36) = 1.
		

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= 1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
  • Mathematica
    Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=n,k++];k,{n,1,30}]
    With[{c=LiouvilleLambda[Range[841*10^4]]},Table[SequencePosition[c,PadRight[ {},n,1],1][[All,1]],{n,24}]//Flatten] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Jul 27 2022 *)

Formula

lambda(n) = (-1)^omega(n) where omega(n) is the number of prime factors of n with multiplicity.

A090410 Values of L(10^n), where L(n) is the summatory function of the Liouville function A008836(n).

Original entry on oeis.org

1, 0, -2, -14, -94, -288, -530, -842, -3884, -25216, -116026, -342224, -522626, -966578, -7424752, -29445104, -97617938, -271676470, -618117940, -810056106, -6260758462, -34541748676
Offset: 0

Views

Author

Eric W. Weisstein, Nov 30 2003

Keywords

Comments

L(n) for n <= 10^13 is always negative from 906488081 to 10^13. It reaches a record negative value of -3458310 at 8196557476890. It reaches a record positive value of 829 at 906316571 (A051470(829)). - Donovan Johnson, Mar 08 2011

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, 10^n, (-1)^bigomega(i)); \\ Michel Marcus, Sep 29 2015

Formula

a(n) = A002819(10^n). - Ray Chandler, May 30 2012

Extensions

a(9)-a(13) from Donovan Johnson, Mar 08 2011
a(14)-a(17) from Hiroaki Yamanouchi, Jul 13 2014
a(18) from Henri Lifchitz, Dec 01 2014
a(19) from Hiroaki Yamanouchi, Sep 28 2015
a(20)-a(21) from Henri Lifchitz, Nov 08 2024

A189229 Counterexamples to Polya's conjecture that A002819(n) <= 0 if n > 1.

Original entry on oeis.org

906150257, 906150258, 906150259, 906150260, 906150261, 906150262, 906150263, 906150264, 906150265, 906150266, 906150267, 906150268, 906150269, 906150270, 906150271, 906150272, 906150273, 906150274, 906150275, 906150276, 906150277, 906150278, 906150279, 906150280
Offset: 1

Views

Author

Jonathan Sondow, Jun 13 2011

Keywords

Comments

The point is that for all x < 906150257 there are more n <= x with Omega(n) odd than with Omega(n) even. At x = 906150257 the evens go ahead for the first time. - N. J. A. Sloane, Feb 10 2022
906150294 is the smallest number > 906150257 that is not in the sequence (see A028488).
See A002819, A008836, A028488, A051470 for additional comments, references, and links.
See Brent and van de Lune (2011) for a history of Polya's conjecture and a proof that it is true "on average" in a certain precise sense.

Examples

			906150257 is the smallest number k > 1 with A002819(k) > 0 (see Tanaka 1980).
		

References

  • Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 22.

Crossrefs

Cf. A002819 (Liouville's summatory function L(n)), A008836 (Liouville's function lambda(n)), A028488 (n such that L(n) = 0), A051470 (least m for which L(m) = n).

Programs

  • PARI
    s=1; c=0; for(n=2, 906188859, s=s+(-1)^bigomega(n); if(s>0, c++; write("b189229.txt", c " " n))) /* Donovan Johnson, Apr 25 2013 */

Formula

{ k : (k-1)*A002819(k) > 0. }

A346457 a(n) is the smallest number k such that |Sum_{j=1..k} (-1)^omega(j)| = n, where omega(j) is the number of distinct primes dividing j.

Original entry on oeis.org

1, 4, 5, 8, 9, 32, 77, 88, 93, 94, 95, 96, 99, 100, 119, 124, 147, 148, 161, 162, 189, 206, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219, 226, 329, 330, 333, 334, 335, 394, 395, 416, 417, 424, 425, 428, 489, 514, 515, 544, 545, 546, 549, 554, 579, 584, 723, 724, 725, 800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 19 2021

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # for values <= N
    omega:= n -> nops(numtheory:-factorset(n)):
    R:= map(n -> (-1)^omega(n),[$1..10000]):
    S:= map(abs,ListTools:-PartialSums(R)):
    m:= max(S):
    V:= Vector(m):
    for i from 1 to N do if S[i] > 0 and V[S[i]] = 0 then V[S[i]]:= i fi od:
    convert(V,list); # Robert Israel, Oct 30 2023
  • Mathematica
    Table[k=1;While[Abs[Sum[(-1)^PrimeNu@j,{j,k}]]!=n,k++];k,{n,30}] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
  • PARI
    a(n) = my(k=1); while (abs(sum(j=1, k, (-1)^omega(j))) != n, k++); k; \\ Michel Marcus, Jul 19 2021

Formula

a(n) = min {k : |Sum_{j=1..k} mu(rad(j))| = n}, where mu is the Moebius function and rad is the squarefree kernel.

A175202 a(n) is the smallest k such that the n consecutive values L(k), L(k+1), ..., L(k+n-1) = -1, where L(m) is the Liouville function A008836(m).

Original entry on oeis.org

2, 2, 11, 17, 27, 27, 170, 279, 428, 5879, 5879, 13871, 13871, 13871, 41233, 171707, 1004646, 1004646, 1633357, 5460156, 11902755, 21627159, 21627159, 38821328, 41983357, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463
Offset: 1

Views

Author

Michel Lagneau, Mar 04 2010

Keywords

Comments

L(n) = (-1)^omega(n) where omega(n) is the number of prime factors of n with multiplicity.

Examples

			a(1) = 2 and L(2) = -1;
a(2) = 2 and L(2) = L(3)= -1;
a(3) = 11 and L(11) = L(12) = L(13) = -1;
a(4) = 17 and L(17) = L(18) = L(19) = L(20) = -1.
		

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= -1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
  • Mathematica
    Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=-n,k++];k,{n,1,30}]

Extensions

a(15) and a(21) corrected by Donovan Johnson, Apr 01 2013

A346455 a(n) is the smallest number k such that Sum_{j=1..k} (-1)^omega(j) = n, where omega(j) is the number of distinct primes dividing j.

Original entry on oeis.org

1, 52, 55, 56, 57, 58, 77, 88, 93, 94, 95, 96, 99, 100, 119, 124, 147, 148, 161, 162, 189, 206, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219, 226, 329, 330, 333, 334, 335, 394, 395, 416, 417, 424, 425, 428, 489, 514, 515, 544, 545, 546, 549, 554, 579, 584, 723, 724, 725, 800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(k=1;While[Sum[(-1)^PrimeNu@j,{j,k}]!=n,k++];k);Array[a,25] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
  • PARI
    a(n) = my(k=1); while (sum(j=1, k, (-1)^omega(j)) !=n, k++); k; \\ Michel Marcus, Jul 19 2021

Formula

a(n) = min {k : Sum_{j=1..k} mu(rad(j)) = n}, where mu is the Moebius function and rad is the squarefree kernel.

A346456 a(n) is the smallest number k such that Sum_{j=1..k} (-1)^omega(j) = -n, where omega(j) is the number of distinct primes dividing j.

Original entry on oeis.org

3, 4, 5, 8, 9, 32, 9283, 9284, 9285, 9292, 9293, 9294, 9295, 9296, 9343, 9434, 9437, 9440, 9479, 9686, 9689, 9690, 9697, 9698, 9699, 9700, 9711, 9716, 9717, 9718, 9719, 9720, 9721, 9740, 9741, 9852, 9855, 9856, 9857, 10284, 10285, 10286, 10305, 10314, 10325, 10326, 10331, 10338
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(k=1;While[Sum[(-1)^PrimeNu@j,{j,k}]!=-n,k++];k);Array[a,6] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
  • PARI
    a(n) = my(k=1); while (sum(j=1, k, (-1)^omega(j)) != -n, k++); k; \\ Michel Marcus, Jul 19 2021

Formula

a(n) = min {k : Sum_{j=1..k} mu(rad(j)) = -n}, where mu is the Moebius function and rad is the squarefree kernel.

A172357 n such that the Liouville function lambda(n) take successively, from n, the values 1,-1,1,-1,1,-1.

Original entry on oeis.org

58, 185, 194, 274, 287, 342, 344, 382, 493, 566, 667, 856, 858, 926, 1012, 1014, 1157, 1165, 1230, 1232, 1234, 1267, 1318, 1385, 1393, 1418, 1482, 1484, 1679, 1681, 1795, 1841, 1915, 1917, 2060, 2062, 2064, 2232, 2340, 2342, 2567, 2569, 2627, 2805, 3013
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2010

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 4300 do;if (-1)^bigomega(n)=1 and (-1)^bigomega(n+1) = -1 and (-1)^bigomega(n+2) = 1 and (-1)^bigomega(n+3) = -1 and (-1)^bigomega(n+4) = 1 and (-1)^bigomega(n+5) = -1 then print(n); else fi ; od;
  • Mathematica
    Transpose[Transpose[#][[1]]&/@Select[Partition[Table[{n, LiouvilleLambda[ n]},{n,3100}],6,1],Transpose[#][[2]]=={1,-1,1,-1,1,-1}&]][[1]] (* Harvey P. Dale, May 19 2012 *)
  • PARI
    lambda(n)=(-1)^bigomega(n);
    for(n=1,1e4,if(lambda(n)==1&lambda(n+1)==-1&lambda(n+2)==1&&lambda(n+3)==-1&lambda(n+4)==1&&lambda(n+5)==-1,print1(n", "))) /* Charles R Greathouse IV, Jun 13 2011 */
Showing 1-10 of 11 results. Next