A072148
Number of invertible (-1,0,1) n X n matrices having (Tij = -Tji; i
2, 14, 92, 796, 7672, 83944
Offset: 1
Examples
{{1,-1,0,0,0},{1,0,0,0,0},{0,0,0,-1,0},{0,0,1,1,0},{0,0,0,0,-1}} qualifies since its powers are: {{0,-1,0,0,0},{1,-1,0,0,0},{0,0,-1,-1,0},{0,0,1,0,0},{0,0,0,0,1}}, {{-1,0,0,0,0},{0,-1,0,0,0},{0,0,-1,0,0},{0,0,0,-1,0},{0,0,0,0,-1}}, {{-1,1,0,0,0},{-1,0,0,0,0},{0,0,0,1,0},{0,0,-1,-1,0},{0,0,0,0,1}}, {{0,1,0,0,0},{-1,1,0,0,0},{0,0,1,1,0},{0,0,-1,0,0},{0,0,0,0,-1}}, {{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}}.
Programs
-
Mathematica
triamatsig[li_List] := Block[{len=Sqrt[8Length[li]+1]/2-1/2}, If[IntegerQ[len], (Part[li, # ]&/@ Table[If[j>i, j(j-1)/2+i, i(i-1)/2+j], {i, len}, {j, len}])Table[If[j>i, -1, 1], {i, len}, {j, len}], li]]; n=4; it=triamatsig/@(-1+IntegerDigits[Range[0, -1+3^(n(n+1)/2)], 3, n(n+1)/2]); result4=Cases[it, (q_?MatrixQ)/; Det[q]=!=0 && And@@ Table[Union[Flatten[{MatrixPower[q, k], {-1, 0, 1}}]]==={-1, 0, 1}, {k, 25}]]
Extensions
a(6) from Wouter Meeussen, Nov 15 2005
Comments