cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A008836 Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Original entry on oeis.org

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
Offset: 1

Views

Author

Keywords

Comments

Coons and Borwein: "We give a new proof of Fatou's theorem: if an algebraic function has a power series expansion with bounded integer coefficients, then it must be a rational function. This result is applied to show that for any non-trivial completely multiplicative function from N to {-1,1}, the series sum_{n=1..infinity} f(n)z^n is transcendental over {Z}[z]; in particular, sum_{n=1..infinity} lambda(n)z^n is transcendental, where lambda is Liouville's function. The transcendence of sum_{n=1..infinity} mu(n)z^n is also proved." - Jonathan Vos Post, Jun 11 2008
Coons proves that a(n) is not k-automatic for any k > 2. - Jonathan Vos Post, Oct 22 2008
The Riemann hypothesis is equivalent to the statement that for every fixed epsilon > 0, lim_{n -> infinity} (a(1) + a(2) + ... + a(n))/n^(1/2 + epsilon) = 0 (Borwein et al., theorem 1.2). - Arkadiusz Wesolowski, Oct 08 2013

Examples

			a(4) = 1 because since bigomega(4) = 2 (the prime divisor 2 is counted twice), then (-1)^2 = 1.
a(5) = -1 because 5 is prime and therefore bigomega(5) = 1 and (-1)^1 = -1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
  • P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 1-11.
  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • P. Ribenboim, Algebraic Numbers, p. 44.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.5 on page 99.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 112.

Crossrefs

Möbius transform of A010052.
Cf. A182448 (Dgf at s=2), A347328 (Dgf at s=3), A347329 (Dgf at s=4).

Programs

  • Haskell
    a008836 = (1 -) . (* 2) . a066829  -- Reinhard Zumkeller, Nov 19 2011
    
  • Maple
    A008836 := n -> (-1)^numtheory[bigomega](n); # Peter Luschny, Sep 15 2011
    with(numtheory): A008836 := proc(n) local i,it,s; it := ifactors(n): s := (-1)^add(it[2][i][2], i=1..nops(it[2])): RETURN(s) end:
  • Mathematica
    Table[LiouvilleLambda[n], {n, 100}] (* Enrique Pérez Herrero, Dec 28 2009 *)
    Table[If[OddQ[PrimeOmega[n]],-1,1],{n,110}] (* Harvey P. Dale, Sep 10 2014 *)
  • PARI
    {a(n) = if( n<1, 0, n=factor(n); (-1)^sum(i=1, matsize(n)[1], n[i,2]))}; /* Michael Somos, Jan 01 2006 */
    
  • PARI
    a(n)=(-1)^bigomega(n) \\ Charles R Greathouse IV, Jan 09 2013
    
  • Python
    from sympy import factorint
    def A008836(n): return -1 if sum(factorint(n).values()) % 2 else 1 # Chai Wah Wu, May 24 2022

Formula

Dirichlet g.f.: zeta(2s)/zeta(s); Dirichlet inverse of A008966.
Sum_{ d divides n } lambda(d) = 1 if n is a square, otherwise 0.
Completely multiplicative with a(p) = -1, p prime.
a(n) = (-1)^A001222(n) = (-1)^bigomega(n). - Jonathan Vos Post, Apr 16 2006
a(n) = A033999(A001222(n)). - Jaroslav Krizek, Sep 28 2009
Sum_{d|n} a(d) *(A000005(d))^2 = a(n) *Sum{d|n} A000005(d). - Vladimir Shevelev, May 22 2010
a(n) = 1 - 2*A066829(n). - Reinhard Zumkeller, Nov 19 2011
a(n) = i^(tau(n^2)-1) where tau(n) is A000005 and i is the imaginary unit. - Anthony Browne, May 11 2016
a(n) = A106400(A156552(n)). - Antti Karttunen, May 30 2017
Recurrence: a(1)=1, n > 1: a(n) = sign(1/2 - Sum_{dMats Granvik, Oct 11 2017
a(n) = Sum_{ d | n } A008683(d)*A010052(n/d). - Jinyuan Wang, Apr 20 2019
a(1) = 1; a(n) = -Sum_{d|n, d < n} mu(n/d)^2 * a(d). - Ilya Gutkovskiy, Mar 10 2021
a(n) = (-1)^A349905(n). - Antti Karttunen, Apr 26 2022
From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (-1)^A066829(n);
a(n) = (-1)^A063647(n);
a(n) = A101455(A048691(n));
a(n) = sin(tau(n^2)*Pi/2). (End)

A002819 Liouville's function L(n) = partial sums of A008836.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -5, -4, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -4, -3, -4, -5, -6, -7, -6, -7, -8, -7, -8, -9, -10, -9, -8, -9, -8, -7, -6
Offset: 0

Views

Author

Keywords

Comments

Short history of conjecture L(n) <= 0 for all n >= 2 by Deborah Tepper Haimo. George Polya conjectured 1919 that L(n) <= 0 for all n >= 2. The conjecture was generally deemed true for nearly 40 years, until 1958, when C. B. Haselgrove proved that L(n) > 0 for infinitely many n. In 1962, R. S. Lehman found that L(906180359) = 1 and in 1980, M. Tanaka discovered that the smallest counterexample of the Polya conjecture occurs when n = 906150257. - Harri Ristiniemi (harri.ristiniemi(AT)nicf.), Jun 23 2001
Prime number theorem is equivalent to a(n)=o(n). - Benoit Cloitre, Feb 02 2003
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 20 2016
In the Liouville function, every prime is assigned the value -1, so it may be expected that the values of a(n) are minimal (A360659) among all completely multiplicative sign functions. As it turns out, this is the case for n < 14 and n = 20. For any other n < 500 there exists a completely multiplicative sign function with a sum less than that of the Liouville function. Conjecture: A360659(n) < a(n) for n > 20. - Bartlomiej Pawlik, Mar 05 2023

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002819 n = a002819_list !! n
    a002819_list = scanl (+) 0 a008836_list
    -- Reinhard Zumkeller, Nov 19 2011
    
  • Maple
    A002819 := n -> add((-1)^numtheory[bigomega](i),i=1..n): # Peter Luschny, Sep 15 2011
  • Mathematica
    Accumulate[Join[{0},LiouvilleLambda[Range[90]]]] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n)=sum(i=1,n,(-1)^bigomega(i))
    
  • PARI
    a(n)=my(v=vectorsmall(n,i,1)); forprime(p=2,sqrtint(n), for(e=2,logint(n,p), forstep(i=p^e, n, p^e, v[i]*=-1))); forprime(p=2,n, forstep(i=p, n, p, v[i]*=-1)); sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Aug 20 2016
    
  • Python
    from functools import reduce
    from operator import ixor
    from sympy import factorint
    def A002819(n): return sum(-1 if reduce(ixor, factorint(i).values(),0)&1 else 1 for i in range(1,n+1)) # Chai Wah Wu, Dec 19 2022

Formula

a(n) = determinant of A174856. - Mats Granvik, Mar 31 2010
a(n) = Sum_{k=1..floor(sqrt(n))} A002321(floor(n / k^2)). - Daniel Suteu, May 30 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 09 2001

A051470 a(n) is least value of m for which the sum of Liouville's function from 1 to m is n.

Original entry on oeis.org

1, 906150258, 906150259, 906150260, 906150263, 906150264, 906150331, 906150334, 906150337, 906150338, 906150339, 906150358, 906150359, 906150362, 906150363, 906150368, 906150387, 906150388, 906150389, 906150406, 906150407
Offset: 1

Views

Author

Keywords

Comments

It was once conjectured that the sum of Liouville's function was never > 0 except for the first term.
It follows from Theorem 2 in Borwein-Ferguson-Mossinghoff that a(n) < 262*n^2 infinitely often, improving on an earlier result of Anderson & Stark. - Charles R Greathouse IV, Jun 14 2011
a(830) > 2 * 10^14 (probably around 3.511e14) and a(1160327) = 351753358289465 according to the calculations of Borwein, Ferguson, & Mossinghoff. - Charles R Greathouse IV, Jun 14 2011
3.75 * 10^14 < a(1160328) <= 23156359315279877168. - Hiroaki Yamanouchi, Oct 04 2015
From Jianing Song, Aug 06 2021: (Start)
a(n) is the smallest m such that A002819(m) = n.
This sequence is strictly increasing since A002819(m) - A002819(m-1) = A008836(m) = +-1. (End)

Examples

			The sum of Liouville's function from 1 through 906150258 is 2, that is the smallest value, so a(2)=906150258.
		

References

  • R. J. Anderson and H. M. Stark, Oscillation theorems, Analytic Number Theory (1980); Lecture Notes in Mathematics 899 (1981), pp. 79-106.

Crossrefs

Cf. A008836 (Liouville's function), A002819, A028488.

Programs

  • PARI
    print1(r=1);t=0;for(n=906150257,906400000,t+=(-1)^bigomega(n);if(t>r,r=t;print1(", "n))) \\ Charles R Greathouse IV, Jun 14 2011

A002053 a(n) = least value of m for which Liouville's function A002819(m) = -n.

Original entry on oeis.org

2, 3, 8, 13, 20, 31, 32, 53, 76, 79, 80, 117, 176, 181, 182, 193, 200, 283, 284, 285, 286, 293, 440, 443, 468, 661, 678, 683, 684, 1075, 1076, 1087, 1088, 1091, 1092, 1093, 1106, 1109, 1128, 1129, 1130, 1131, 1132, 1637, 1638, 1753, 1756, 1759, 1760, 2699
Offset: 0

Views

Author

Keywords

Comments

Also when n first appears in A072203(m).

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = f[n - 1] -(-1)^Length[Flatten[Table[ #[[1]], {#[[2]]}] & /@ FactorInteger[n]]]; f[1] = 0; Do[k = 1; While[f[k] != n, k++ ]; Print[k], {n, 1, 50}]
  • Python
    from functools import reduce
    from operator import ixor
    from itertools import count
    from sympy import factorint
    def A002053(n): return next(filter(lambda m:-n==sum(-1 if reduce(ixor, factorint(i).values(),0)&1 else 1 for i in range(1,m+1)),count(1))) # Chai Wah Wu, Jan 01 2023

Extensions

More terms from Jud McCranie

A072203 (Number of oddly factored numbers <= n) - (number of evenly factored numbers <= n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 6, 7, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8, 9, 8, 9, 10, 11, 10, 9, 10, 9, 8, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 2, 3, 4, 3, 4, 5, 6
Offset: 1

Views

Author

Bill Dubuque (wgd(AT)zurich.ai.mit.edu), Jul 03 2002

Keywords

Comments

A number m is oddly or evenly factored depending on whether m has an odd or even number of prime factors, e.g., 12 = 2*2*3 has 3 factors so is oddly factored.
Polya conjectured that a(n) >= 0 for all n, but this was disproved by Haselgrove. Lehman gave the first explicit counterexample, a(906180359) = -1; the first counterexample is at 906150257 (Tanaka).

References

  • G. Polya, Mathematics and Plausible Reasoning, S.8.16.

Crossrefs

Programs

  • Haskell
    a072203 n = a072203_list !! (n-1)
    a072203_list = scanl1 (\x y -> x + 2*y - 1) a066829_list
    -- Reinhard Zumkeller, Nov 19 2011
    
  • Mathematica
    f[n_Integer] := Length[Flatten[Table[ #[[1]], {#[[2]]}] & /@ FactorInteger[n]]]; g[n_] := g[n] = g[n - 1] + If[ EvenQ[ f[n]], -1, 1]; g[1] = 0; Table[g[n], {n, 1, 103}]
    Join[{0},Accumulate[Rest[Table[If[OddQ[PrimeOmega[n]],1,-1],{n,110}]]]] (* Harvey P. Dale, Mar 10 2013 *)
    Table[1 - Sum[(-1)^PrimeOmega[i], {i, 1, n}], {n, 1, 100}] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    a(n) = 1 - sum(i=1, n, (-1)^bigomega(i));
    for(n=1, 100, print1(a(n),", ")) \\ Indranil Ghosh, Mar 17 2017
    
  • Python
    from functools import reduce
    from operator import ixor
    from sympy import factorint
    def A072203(n): return 1+sum(1 if reduce(ixor, factorint(i).values(),0)&1 else -1 for i in range(1,n+1)) # Chai Wah Wu, Dec 20 2022

Formula

a(n) = 1 - A002819(n). - T. D. Noe, Feb 06 2007

Extensions

Edited and extended by Robert G. Wilson v, Jul 13 2002
Comment corrected by Charles R Greathouse IV, Mar 08 2010

A175201 a(n) is the smallest k such that the n consecutive values lambda(k), lambda(k+1), ..., lambda(k+n-1) = 1, where lambda(m) is the Liouville function A008836(m).

Original entry on oeis.org

1, 9, 14, 33, 54, 140, 140, 213, 213, 1934, 1934, 1934, 35811, 38405, 38405, 200938, 200938, 389409, 1792209, 5606457, 8405437, 8405437, 8405437, 8405437, 68780189, 68780189, 68780189, 68780189, 880346227, 880346227, 880346227, 880346227, 880346227
Offset: 1

Views

Author

Michel Lagneau, Mar 04 2010

Keywords

Comments

Short history of conjecture L(n) <= 0 for all n >= 2 by Deborah Tepper Haimo, where L(n) is the summatory Liouville function A002819(n). George Polya conjectured 1919 that L(n) <= 0 for all n >= 2. The conjecture was generally deemed true for nearly 40 years, until 1958, when C. B. Haselgrove proved that L(n) > 0 for infinitely many n. In 1962, R. S. Lehman found that L(906180359) = 1 and in 1980, M. Tanaka discovered that the smallest counterexample of the Polya conjecture occurs when n = 906150257.

Examples

			a(1) = 1 and L(1) = 1;
a(2) = 9 and L(9) = L(10)= 1;
a(3) = 14 and L(14) = L(15) = L(16) = 1;
a(4) = 33 and L(33) = L(34) = L(35) = L(36) = 1.
		

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= 1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
  • Mathematica
    Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=n,k++];k,{n,1,30}]
    With[{c=LiouvilleLambda[Range[841*10^4]]},Table[SequencePosition[c,PadRight[ {},n,1],1][[All,1]],{n,24}]//Flatten] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Jul 27 2022 *)

Formula

lambda(n) = (-1)^omega(n) where omega(n) is the number of prime factors of n with multiplicity.

A189229 Counterexamples to Polya's conjecture that A002819(n) <= 0 if n > 1.

Original entry on oeis.org

906150257, 906150258, 906150259, 906150260, 906150261, 906150262, 906150263, 906150264, 906150265, 906150266, 906150267, 906150268, 906150269, 906150270, 906150271, 906150272, 906150273, 906150274, 906150275, 906150276, 906150277, 906150278, 906150279, 906150280
Offset: 1

Views

Author

Jonathan Sondow, Jun 13 2011

Keywords

Comments

The point is that for all x < 906150257 there are more n <= x with Omega(n) odd than with Omega(n) even. At x = 906150257 the evens go ahead for the first time. - N. J. A. Sloane, Feb 10 2022
906150294 is the smallest number > 906150257 that is not in the sequence (see A028488).
See A002819, A008836, A028488, A051470 for additional comments, references, and links.
See Brent and van de Lune (2011) for a history of Polya's conjecture and a proof that it is true "on average" in a certain precise sense.

Examples

			906150257 is the smallest number k > 1 with A002819(k) > 0 (see Tanaka 1980).
		

References

  • Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 22.

Crossrefs

Cf. A002819 (Liouville's summatory function L(n)), A008836 (Liouville's function lambda(n)), A028488 (n such that L(n) = 0), A051470 (least m for which L(m) = n).

Programs

  • PARI
    s=1; c=0; for(n=2, 906188859, s=s+(-1)^bigomega(n); if(s>0, c++; write("b189229.txt", c " " n))) /* Donovan Johnson, Apr 25 2013 */

Formula

{ k : (k-1)*A002819(k) > 0. }

A175202 a(n) is the smallest k such that the n consecutive values L(k), L(k+1), ..., L(k+n-1) = -1, where L(m) is the Liouville function A008836(m).

Original entry on oeis.org

2, 2, 11, 17, 27, 27, 170, 279, 428, 5879, 5879, 13871, 13871, 13871, 41233, 171707, 1004646, 1004646, 1633357, 5460156, 11902755, 21627159, 21627159, 38821328, 41983357, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463, 179376463
Offset: 1

Views

Author

Michel Lagneau, Mar 04 2010

Keywords

Comments

L(n) = (-1)^omega(n) where omega(n) is the number of prime factors of n with multiplicity.

Examples

			a(1) = 2 and L(2) = -1;
a(2) = 2 and L(2) = L(3)= -1;
a(3) = 11 and L(11) = L(12) = L(13) = -1;
a(4) = 17 and L(17) = L(18) = L(19) = L(20) = -1.
		

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= -1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
  • Mathematica
    Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=-n,k++];k,{n,1,30}]

Extensions

a(15) and a(21) corrected by Donovan Johnson, Apr 01 2013

A172357 n such that the Liouville function lambda(n) take successively, from n, the values 1,-1,1,-1,1,-1.

Original entry on oeis.org

58, 185, 194, 274, 287, 342, 344, 382, 493, 566, 667, 856, 858, 926, 1012, 1014, 1157, 1165, 1230, 1232, 1234, 1267, 1318, 1385, 1393, 1418, 1482, 1484, 1679, 1681, 1795, 1841, 1915, 1917, 2060, 2062, 2064, 2232, 2340, 2342, 2567, 2569, 2627, 2805, 3013
Offset: 1

Views

Author

Michel Lagneau, Feb 01 2010

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 4300 do;if (-1)^bigomega(n)=1 and (-1)^bigomega(n+1) = -1 and (-1)^bigomega(n+2) = 1 and (-1)^bigomega(n+3) = -1 and (-1)^bigomega(n+4) = 1 and (-1)^bigomega(n+5) = -1 then print(n); else fi ; od;
  • Mathematica
    Transpose[Transpose[#][[1]]&/@Select[Partition[Table[{n, LiouvilleLambda[ n]},{n,3100}],6,1],Transpose[#][[2]]=={1,-1,1,-1,1,-1}&]][[1]] (* Harvey P. Dale, May 19 2012 *)
  • PARI
    lambda(n)=(-1)^bigomega(n);
    for(n=1,1e4,if(lambda(n)==1&lambda(n+1)==-1&lambda(n+2)==1&&lambda(n+3)==-1&lambda(n+4)==1&&lambda(n+5)==-1,print1(n", "))) /* Charles R Greathouse IV, Jun 13 2011 */

A249482 Numbers n such that the summatory Liouville function L(n) (A002819) is zero and L(n-1)*L(n+1) = -1.

Original entry on oeis.org

2, 906150256, 906150308, 906150310, 906151576, 906154582, 906154586, 906154604, 906154606, 906154608, 906154758, 906154762, 906154764, 906154768, 906154770, 906154788, 906154794, 906154824, 906154826, 906154828, 906154830, 906154836, 906154838, 906154856
Offset: 1

Views

Author

Vladimir Shevelev, Jan 13 2015

Keywords

Comments

To create the data, the author studied the b-file of Donovan Johnson in A189229.
For k>=1,
in the interval [a(2k-1), a(2k)], L(n)<=0,
in the interval [a(2k), a(2k+1)], L(n)>=0.
In particular, for k=1, in the interval [2, 906150256], L(n)<=0.
G. Polya (1919) conjectured that L(n)<=0, for n>=2. But this was disproved in 1958 by B. Haselgrove, and in 1980 M. Tanaka found the smallest counterexample, a(2)+1 = 906150257.

Crossrefs

Showing 1-10 of 12 results. Next