cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076244 Distinct values arising in A051547, sequence of a(n) = lcm(phi(1), ..., phi(n)).

Original entry on oeis.org

1, 2, 4, 12, 60, 120, 240, 720, 7920, 55440, 1275120, 2550240, 33153120, 961440480, 2884321440, 118257179040, 236514358080, 1182571790400, 20103720436800, 1065497183150400, 39423395776564800, 118270187329694400
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Union@ FoldList[LCM @@ {#1, EulerPhi@ #2} &, Range@ 165] (* Michael De Vlieger, Dec 09 2018 *)
  • PARI
    lista(nn) = {last = -1; for (n=1, nn, new = lcm(vector(n, k, eulerphi(k))); if (new != last, print1(new, ", "); last = new););} \\ Michel Marcus, Mar 18 2018

A076245 Positions of records in A051547.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 29, 47, 51, 53, 59, 81, 83, 85, 101, 103, 107, 149, 163, 167, 173, 179, 191, 197, 227, 251, 255, 257, 263, 269, 283, 293, 311, 317, 347, 359, 367, 383, 389, 467, 479, 487, 503, 509, 557, 563, 569, 587, 607, 619, 643, 653, 677
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Comments

Observe that both primes and composites (including 15, 51, 81, 85, and 255) occur.
In totients of consecutive terms some prime-factor appears at higher power than in preceding ones: see A076246 and A051451.

Crossrefs

Programs

  • Mathematica
    With[{s = FoldList[LCM @@ {#1, EulerPhi@ #2} &, Range[700]]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Dec 09 2018 *)
  • PARI
    lista(nn) = {least = 1; print1(1, ", "); for (n=2, nn, nleast = lcm(least, eulerphi(n)); if (nleast > least, print1(n, ", ")); least = nleast;);} \\ Michel Marcus, Jul 30 2017

A076246 Totients of those numbers at which values of A051547 increase: in these consecutive terms new prime powers arise, i.e., which did not occur in neither of preceding terms.

Original entry on oeis.org

2, 4, 6, 10, 8, 16, 18, 22, 28, 46, 32, 52, 58, 54, 82, 64, 100, 102, 106, 148, 162, 166, 172, 178, 190, 196, 226, 250, 128, 256, 262, 268, 282, 292, 310, 316, 346, 358, 366, 382, 388, 466, 478, 486, 502, 508, 556, 562, 568, 586, 606, 618, 642, 652, 676, 708
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Examples

			8 = 2*2*2 immediately follows 10 = 2*5; 58 = 2*29 follows 52 = 2*2*13. In both cases, the latter term has a new prime factor (like 29) or an old one at a higher power (like 2*2*2).
		

Crossrefs

Programs

  • Mathematica
    s0=1; s1=1; Do[s0=s1; s1=LCM[s1, EulerPhi[n]]; If[ !Equal[s0, s1], Print[n]], {n, 1, 1000}]
  • PARI
    lista(nn) = {least = 1; for (n=2, nn, nleast = lcm(least, eulerphi(n)); if (nleast > least, print1(eulerphi(n), ", ")); least = nleast;);} \\ Michel Marcus, Jul 30 2017

Formula

a(n) = phi(A076245(n + 1)). - Sean A. Irvine, Mar 25 2025
Showing 1-3 of 3 results.