cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051561 Third unsigned column of triangle A051379.

Original entry on oeis.org

0, 0, 1, 27, 539, 9850, 176554, 3197348, 59354028, 1137868848, 22614500016, 466814750688, 10015620672672, 223359393479040, 5175622796192640, 124533006364442880, 3109120944743427840, 80473740053567016960
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=8) ~ exp(-x)/x^3*(1 - 27/x + 539/x^2 - 9850/x^3 + 176554/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.

Crossrefs

Cf. A049388 (m=0), A051560 (m=1) unsigned columns.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(Log[1-x])^2/(2(1-x)^8),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 10 2013 *)

Formula

a(n) = A051379(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^8).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,8)|, for n>=1. - Milan Janjic, Dec 21 2008