cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051581 a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580 (rows m=0..6), A051582, A051583.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+7)!!/7!!.
E.g.f.: 1/(1-2*x)^(9/2).
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + 1/(2*k+9)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 9)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 9*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 9*x/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 105 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 147, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 77 - 105 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)