A051607 a(n) = (3*n+7)!!!/7!!!.
1, 10, 130, 2080, 39520, 869440, 21736000, 608608000, 18866848000, 641472832000, 23734494784000, 949379791360000, 40823331028480000, 1877873227310080000, 92015788138193920000, 4784820983186083840000, 263165154075234611200000, 15263578936363607449600000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..378
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(10/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018 -
Mathematica
With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(10/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(10/3))) \\ G. C. Greubel, Aug 15 2018
Formula
a(n) = ((3*n+7)(!^3))/7(!^3).
E.g.f.: 1/(1-3*x)^(10/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(3*e)^(1/3)*(Gamma(10/3) - Gamma(10/3, 1/3)). - Amiram Eldar, Dec 23 2022
Comments